Category Archives: Science communication

The Conversation: ‘Existential threat to our survival’: see the 19 Australian ecosystems already collapsing

By Dana M Bergstrom (University of Wollongong), Euan Ritchie (Deakin University), Lesley Hughes (Macquarie University) and Michael Depledge (University of Exeter).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

In 1992, 1,700 scientists warned that human beings and the natural world were “on a collision course”. Seventeen years later, scientists described planetary boundaries within which humans and other life could have a “safe space to operate”. These are environmental thresholds, such as the amount of carbon dioxide in the atmosphere and changes in land use.

Crossing such boundaries was considered a risk that would cause environmental changes so profound, they genuinely posed an existential threat to humanity.

This grave reality is what our major research paper, published today, confronts.

In what may be the most comprehensive evaluation of the environmental state of play in Australia, we show major and iconic ecosystems are collapsing across the continent and into Antarctica. These systems sustain life, and evidence of their demise shows we’re exceeding planetary boundaries.

We found 19 Australian ecosystems met our criteria to be classified as “collapsing”. This includes the arid interior, savannas and mangroves of northern Australia, the Great Barrier Reef, Shark Bay, southern Australia’s kelp and alpine ash forests, tundra on Macquarie Island, and moss beds in Antarctica.

We define collapse as the state where ecosystems have changed in a substantial, negative way from their original state – such as species or habitat loss, or reduced vegetation or coral cover – and are unlikely to recover.

The good and bad news

Ecosystems consist of living and non-living components, and their interactions. They work like a super-complex engine: when some components are removed or stop working, knock-on consequences can lead to system failure.

Our study is based on measured data and observations, not modelling or predictions for the future. Encouragingly, not all ecosystems we examined have collapsed across their entire range. We still have, for instance, some intact reefs on the Great Barrier Reef, especially in deeper waters. And northern Australia has some of the most intact and least-modified stretches of savanna woodlands on Earth.

Still, collapses are happening, including in regions critical for growing food. This includes the Murray-Darling Basin, which covers around 14% of Australia’s landmass. Its rivers and other freshwater systems support more than 30% of Australia’s food production.

The effects of floods, fires, heatwaves and storms do not stop at farm gates; they’re felt equally in agricultural areas and natural ecosystems. We shouldn’t forget how towns ran out of drinking water during the recent drought.

Drinking water is also at risk when ecosystems collapse in our water catchments. In Victoria, for example, the degradation of giant Mountain Ash forests greatly reduces the amount of water flowing through the Thompson catchment, threatening nearly five million people’s drinking water in Melbourne.

This is a dire wake-up call — not just a warning. Put bluntly, current changes across the continent, and their potential outcomes, pose an existential threat to our survival, and other life we share environments with.

In investigating patterns of collapse, we found most ecosystems experience multiple, concurrent pressures from both global climate change and regional human impacts (such as land clearing). Pressures are often additive and extreme.

Take the last 11 years in Western Australia as an example.

In the summer of 2010 and 2011, a heatwave spanning more than 300,000 square kilometres ravaged both marine and land ecosystems. The extreme heat devastated forests and woodlands, kelp forests, seagrass meadows and coral reefs. This catastrophe was followed by two cyclones.

A record-breaking, marine heatwave in late 2019 dealt a further blow. And another marine heatwave is predicted for this April.

These 19 ecosystems are collapsing: read about each

① Great Barrier Reef

The Great Barrier Reef is the world’s largest coral reef system, extending over 2,300 kilometres. It is home to over 5,000 species of mollusk, 1,500 species of fish, 400 species of coral and around 240 species of birds. It spreads over almost 4,000 individual reefs, 900 continental islands, 300 coral cays and 150 inshore mangrove islands.

In the last 30 years, climate change and many regional pressures have combined to cause ecosystem collapse across the reef, with shallower reefs worse off than deeper reefs. These pressures include five mass coral bleaching events since 1998, marine heatwaves, major tropical cyclones, freshwater floods from extreme high rainfall events, flood sediment and pollution, ocean acidification and crown of thorns starfish outbreaks.

Major feedback loops that compound the pressures are now establishing. From 1985–2017, the reef lost half of all coral cover due to five massive bleaching events, of which two were consecutive (2016, 2017). In 2017, 67% of corals died along a 700km stretch.

The reef provides around A$12 trillion of ecosystem services and over 64,000 jobs. The Australian and Queensland governments have committed billions into reef protection but there are significant challenges to overcome.

Pressures:

  • Temperature
  • Ocean acidification
  • Salinity change
  • Native species interactions
  • Heatwave
  • Flood
  • Storm
  • Habitat change/loss
  • Runoff / pollution
  • Other (dredging, fishing, boat strikes, ship fouling, tourism debris)
② Australian Tropical Savannas

Australia’s tropical savannas sweep across more than 1 million square kilometres of northern Australia, from the western Kimberley region, WA, to the eastern edge of Queensland’s tropical coast. Savanna woodlands and forests have mainly gum trees over an understory of tall grasses and very ancient, poor soils.

These savannas are currently the least altered and unpolluted in the world, but they’re changing fast because of agriculture, mining and the effects of poor management decisions of the past. Land clearing has removed vegetation permanently, reducing food availability for wildlife. Climate change is adding further pressures as rains increase in the wet season, and dry seasons are becoming hotter and last longer.

Add in cat predation, the presence of cane toads, livestock encroachment and increasing bush fire frequency, and it becomes clear why Kakadu National Park is now a hot spot for mammal extinction.

Of particular urgency is the impact of a weed called giant African Gamba grass. It grows up to 4 m in height and produces up to 74,000 seeds per square metre. This adds a huge fuel load for fires, which burn 12 times more intensely than native grass fires, with flames penetrating and killing tree canopy. Gamba grass fires are very expensive to fight, cause loss of livestock and agricultural assets, and diminish the financial viability of the low carbon farming initiative of “savanna burning”.

Damage to the savannas affects the cultural, spiritual and socioeconomic livelihoods of First Nations communities. Loss of ecosystem services, production and pastoral lands is around A$113 million per year.

Pressures:

  • Rainfall changes
  • Temperature
  • Increasing CO2
  • Storm
  • Fire
  • Habitat change/loss/ mining
  • Invasive species
  • Livestock impacts/ harvesting
  • Water extraction
  • Human-lit fire
③ Mangrove Forests, Gulf of Carpentaria

In late 2015, nearly 40 million mangrove trees, representing around one million tons of carbon, died along 1,000 kilometres of the Gulf of Carpentaria. They succumbed to multiple pressures, including extremely high temperatures (39°C for 18 days), prolonged drought conditions, along with feral pigs, scrub fires and invasive weeds.

But most significant was the additive effect of severe El Niño conditions, which effectively pushed the sea away from the coast. This led to a short-term, extreme drop in mean sea level of around 20 centimetres, taking seawater away from mangrove roots.

Two severe tropical cyclones and damaging floods have since hampered its recovery. Continued tidal rafting of dead trunks is curtailing the establishment of seedlings and damaging remaining trees. And the decomposition of dead roots is probably affecting nursery habitat for fish and crustaceans.

The damage is expected to have lasting repercussions on the local economy and livelihoods of the region. The Gulf of Carpentaria fishing industry is worth A$30 million per year. First Nation people and recreational fishers also use the area. Ecosystem services from mangroves are worth around A$250,000 per hectare per year.

Pressures:

  • Rainfall changes- drought
  • Temperature
  • Salinity change
  • Sea level change – extreme lows
  • Heatwave
  • Flood
  • Storm
  • Habitat change/loss – erosion
  • Invasive species
  • Livestock impacts
  • Water extraction
  • Runoff
  • Human-lit fire
  • Other
④ Wet Tropical Rainforest, North Queensland

The wet tropics of North Queensland span around 450 kilometres, with rainforest covering around 1.85 million hectares. The region contains extraordinary diversity, with more than 3,000 plant species and over 60 vertebrate species found nowhere else on Earth. Although tropical rainforests make up only 0.1% of Australia’s landmass, they’re also home to over 50% of its ferns, butterflies and birds, and over 20% of freshwater fish, mammals, orchids, frogs and reptiles.

It’s for this reason and others, such as the significant First Nations cultural values, that the wet tropics are a World Heritage Area.

But they experience a range of pressures, many of which compound each other. These include habitat fragmentation, fringe livestock grazing, increased urbanisation, more frequent and severe fires and invasive plants and animals. Climate change poses perhaps the greatest threat overall.

Many of the region’s plants and animals live in discrete elevation bands: a “Goldilocks” combination of the right habitat and microclimate. As air temperatures increase and extremes in weather worsen, species’ areas of suitable habitat shrink. Some species have already moved to higher elevations and/or experienced striking local population declines. For example, in November 2018, a heatwave killed one-third of all spectacled flying foxes. And two possum species have disappeared from habitat under an altitude of 600 metres.

There have been four major storms or cyclones in 13 years. One event brought up to 2 m of rain, and the storm surge (seawater) inundated coastal rainforest. In 2006, one cyclone killed 35% of the regional cassowary populations, and cars and dogs killed many more as the birds left the destroyed forest.

The wet tropics are visited by around 5 million tourists per year, contributing over A$400 million to the region’s economy. In 2015, the wet tropics were valued at over A$5 billion per year, due to ecosystem services such as carbon sequestration, biodiversity protection, and soil and water resources.

Pressures:

  • Climate change
  • Extreme weather and climatic events (heatwaves, floods, cyclones, extended dry seasons)
  • Species interactions (such as snake losing prey due to flooding)
  • Invasive plants and animals
  • Habitat fragmentation and destruction
  • Logging and land clearing
  • Altered fire regimes (more frequent and severe fires)
  • Erosion, sediment runoff and pollution
  • Overgrazing
  • Tourism
  • Urbanisation
  • Chytrid fungus
⑤ Western-central Arid Zones

The arid zone covers around 43% of Australia and is characterised by low lands, generally less than 300 metres in elevation, occasionally punctuated by a few big hills (higher than 1,000 metres). Vegetation ranges from woodlands, shrublands and grasslands to rangelands and desert dunes. There are isolated freshwater systems through the arid zone including waterholes and lakes, underground water, clay pans and springs fed by the Great Artesian Basin.

Widespread pastoral activities over the last 100 years have altered large areas of the arid zone from their pre-European states. Changes include major loss of habitats, reduction in small mammal populations, and livestock trampling of delicate biotic soil crusts (which maintain soil and dune stability and water infiltration).

There are more than 200 weed species. Some were planted for pasture, shade trees or to suppress dust, and dispersed by machinery, vehicles and floods. The most threatening is buffel grass. It has invaded extensive areas, wreaking havoc through degradation, habitat loss and biodiversity decline. Like Gamba grass in the north, in combination with extreme heatwaves, buffel grass has altered fire frequency and intensity. Hot fires now reach well into the tree canopy, killing the trees, as well as shrubs and native grasses.

Introduced feral animals include cattle, goats, camels, foxes, cats and pigs.

The arid zone rangelands are also economically important and contribute approximately A$4.4 billion per year to Australia’s economy through tourism, pastoralism and agriculture combined.

Pressures:

  • Rainfall changes
  • Temperature
  • Heat wave
  • Fire
  • Habitat change/loss
  • Invasive species
  • Livestock
  • Water extraction
⑥ Georgina Gidgee Woodlands, central Australia

Georgina gidgee is a keystone tree, a species that holds an ecosystem together, and dominates low open woodlands. It occurs naturally in small patches (up to 10 hectares) in the arid zone, growing mostly along watercourses and in clay depressions between spinifex grass dunes. Georgina gidgee woodlands are important hot spots for life, acting as refuges for native rodents, small marsupials, red kangaroos and bats. They provide permanent or temporary habitat for more than 80 bird species, and animals such as lizards and ants.

Georgina gidgee woodlands are heading for collapse due to a range of pressures including climate change, fire, overgrazing, wood collection, weeds, feral animals and changes in water flow. For example, harvesting for fence posts in the Brigalow Belt, Queensland, cleared 7.4 million ha of gidgee and associated ecosystems by 1998. What remains still suffers extensive loss through pastoral activities.

As mature trees are relatively long-lived (over 200 years), their recovery is slow. Without significant intervention, this ecosystem will turn into a desert.

The consequences of desertification include loss of shade for cattle, loss of water catchment surface for refilling the artesian basin, and loss of biodiversity and ecosystem function associated with their role in stabilising ancient dunes. Loss of vegetation also increases the number of giant, regional dust storms, which can travel all the way to the major cities in eastern Australia.

Pressures:

  • Rainfall changes
  • Temperature
  • Heat wave
  • Fire
  • Habitat change/loss
  • Invasive species
  • Livestock
  • Water extraction
  • Other
⑦ Ningaloo Reef, northern Western Australia

Ningaloo and adjacent reefs are within the World Heritage listed Ningaloo Coast, and comprise an ecosystem of immense biodiversity, and national and international ecological importance. It’s home to megafauna such as migrating whale sharks and whales, turtles, corals, and economically important habitat for fisheries.

The ecosystem is threatened by rising ocean temperatures, ocean acidification, and increasingly intense and severe weather events such as marine heatwaves and tropical cyclones. Coral bleaching events have been recorded from 1990 to 2019, causing substantial reef-wide death (such as around 80% loss of coral cover of Bundegi Reef).

Fish numbers have also decreased, especially in recreational fishing areas. Pressures from human use and water quality exacerbates these changes. And crown-of-thorns starfish and carnivorous snails hamper their recovery from bleaching.

The impacts of these combined global and local pressures are felt in tourism and commercial fisheries, which are worth around A$1.5 billion per year for the region.

Pressures:

  • Temperature
  • Ocean acidification
  • Sea level change
  • Heat wave
  • Storm
  • Habitat change/loss
  • Livestock harvesting
  • Water extraction
  • Runoff / pollution
⑧ Shark Bay Seagrass Communities, Western Australia

Shark Bay, a World Heritage Area, is the home to one of world’s largest (4,300 square kilometres) and most diverse seagrass meadows. It’s a carbon storage hotspot, holding 350 million tons of carbon.

It supports an extensive food web, and diverse fauna including tiger sharks, and around 10% of the world’s dugongs, manta rays, dolphins, and green and loggerhead turtles. Southern right and humpback whales also use Shark Bay as a migratory staging post.

Over a background of chronic increases in seawater temperatures, Shark Bay experienced an unprecedented marine heatwave in the summer of 2010-11, lasting more than 10 weeks. Meanwhile, flooding from a tropical storm over the Gascoyne River catchment covered the bottom of the bay in up to 10 centimetres of mud. About a quarter of all sea grasses died, with limited recovery since.

This saw major decreases in dugongs (68% decrease), sea snakes (77% decrease). Populations of bottlenose dolphins, pied cormorants and green sea turtles decreased by 35–40%. Another marine heatwave hit in December 2019, and another is predicted for March 2021

The failure of major seagrass recovery has led to the release of millions of tons of carbon dioxide as organic sediments breakdown. The ecosystem collapse caused major disruption to the local commercial fishing industry, when the scallop and crab commercial fishery had to close for five years.

Pressures:

  • Temperature
  • Ocean acidification
  • Heat wave
  • Flood
  • Storm
  • Habitat change/loss
  • Livestock harvesting
  • Other
⑨ Murray Darling River Basin — waterways

The Murray-Darling Basin is Australia’s largest river system with 23 river valleys and over 77,000 kilometres of watercourses. The basin has more than 30,000 wetlands (400 wetlands are considered “high value” in Victoria alone) home to 46 species of native fish and 120 species of water birds. Some wetlands are recognised internationally as globally important.

The overall health of the river system is poor. Since European settlement, the river and tributaries have become highly regulated, with significant water diversion for agriculture and urban uses. These impacts have been exacerbated by increasing temperatures, declining average rainfall and severe droughts, further reducing water flows (by 40% since the mid-1990s).

Salinisation (saltier water), toxic algal blooms, hypoxia (low oxygen), introduced fish species, erosion, bushfire ash and nutrient runoff also contribute to declining water quality. Today, native fish populations are just 10% of pre-European numbers. Some 20 mass fish deaths, including of threatened species, have occurred since the 1960s.

The ecosystem is increasingly non-functional with decreasing freshwater biodiversity, and loss of ecosystem services and cultural values. The 2011 plan to improve the basin set a target to recover water for the environment, diverting it from irrigation. This was estimated to cost A$542 million annually, but the additional water has added A$3–8 billion worth of ecosystem services to the entire basin.

Despite the last drought ending, and rivers are flowing again, troubles are still emerging with recent reports of toxic algal blooms.

Pressures:

  • Rainfall changes
  • Temperature
  • Water level change
  • Heat wave
  • Flood
  • Fire
  • Habitat change/loss
  • Invasive species
  • Livestock/harvesting
  • Water extraction
  • Runoff/pollution
  • Other
⑩ Murray-Darling River Basin — riverine

The Murray Darling Basin covers around 14% of Australia’s land area, comprising low-lying undulating areas, extensive plains and parts of the Great Dividing Range. The basin is Australia’s most important water catchment – forests and wetlands cover over 100 million hectares of floodplains and adjacent riverbank areas. The mighty river red gum is key to the health of these ecosystems that depend on frequent flooding (once every three years) for growth and reproduction.Floodplain and riparian vegetation provide corridors and habitat for millions of animals, including water birds and 46 species of native fish. More than 2 million people live in the basin, and it’s home to 46 First Nations who care for at least 10,000 culturally significant places.

Over the last 200 years, humans have altered much of the basin, including the construction of weirs, irrigation channels, farm dams and municipal water reservoirs. All these changes affect the region’s water, and have significantly deteriorated riparian (bank-side) systems and populations of dependent species such as waterbirds.

Around 40% of the highly diverse ecosystems have been cleared or otherwise modified for logging and agricultural use. In 2008, an investigation of 1,600km of river estimated only 30% of the remaining river red gums were in good condition. Extraction of water for agriculture, including 1.8 million megalitres of groundwater, has increased soil salinity. The region is experiencing chronically raising temperatures, ongoing reductions in rainfall and increasingly long and severe droughts (2003–2009, 2017–2019).

Despite some restoration efforts, ecological collapse of riverine ecosystems continues. As tree deaths are becoming more widespread, forest canopy cover is reducing. Rivers flows and groundwater levels are decreasing, contributing to loss and degradation of habitat. Populations of birds, mammals and fish are shrinking. All these changes have flow-on impacts.

The basin is Australia’s main food bowl; 40% of food worth A$22 billion is produced annually. In addition, tourism contributes some A$8 billion each year. The droughts cut farm profits by 30%.

Pressures:

  • Rainfall changes
  • Temperature
  • Heat wave
  • Fire
  • Habitat change/loss
  • Invasive species
  • Livestock/harvesting
  • Water extraction
⑪ Montane and Sub-alpine Forests, South Australia, New South Wales and the Victorian highlands

Montane alpine ash and subalpine snowgum forests occupy the highest forested areas of the Australian Alps. Alpine ash are giants and can grow over 90 metres tall, although trees over 40m are rare across most of the alps today.

Intense fires kill both snowgums and alpine ash. Climate change is increasing the frequency of fire through droughts, longer snow-free periods, tree stress and dry lightning in storms. This is amplified by positive feedback, where regrowth after prescribed burns or bushfire is much more flammable than long-unburnt forest. From 2000 to 2019, 84% of the entire alpine ash forests in NSW and Victoria were burned, some areas up to three times. Now, 70% of alpine ash are immature trees and over 75% of snow gums are at their most flammable age.These forests are critical to the health of one of Australia’s most important water catchments. They also store large quantities of carbon, and surround high value utility and tourism infrastructure, such as Snowy Mountain power stations and ski resorts.

Increases in wildfire amplified by positive feedbacks place a heavy economic burden on these, as well as a health and safety impact on surrounding human populations.

Pressures:

  • Rainfall changes
  • Temperature
  • Heatwave
  • Storm
  • Fire
  • Habitat change/loss
  • Invasive species
  • Livestock / harvesting
  • Human-lit fire
⑫ Great Southern Reef Kelp Forests, southern Australia

The Great Southern Reef extends along 8,100 kilometres of coast, covering 71,000 square kilometres from Brisbane, around the south coast of Australia and Tasmania, to well north of Perth. It comprises a large number of rocky temperate reefs that support lush kelp forests, dominated by golden kelp and, in colder areas, giant kelp. Kelp supports high levels of biodiversity including other seaweeds, sponges, crustaceans, starfish, abalone, fish and rock-lobsters.

Different combinations of pressures cause kelp forest to degrade and collapse. These include coastal development, pollution, marine heatwaves, ocean acidification, and increased storm severity and frequency. For example, along 100 km of coastline reefs from Perth to Kalbarri, WA, most kelp forests have been lost and replaced with algal turfs. Giant kelp forests are now endangered.

The East Australian Current (thrust into popular culture via the film Finding Nemo) is frequently penetrating southward to Tasmania. This transports warm, nutrient- depleted waters, larvae of a NSW sea urchin and northern species of fish. The sea urchins severely damage the kelp forests, as does overfishing of large lobsters.

On conservatively estimates, the Great Southern Reef kelp forests generate at least A$10 billion per year in economic activity. Economic and social consequences of its decline include the collapse of the rock lobster, abalone and other fisheries, as well as impacts on Indigenous communities and decreases in tourism.

Pressures:

  • Temperature
  • Ocean acidification
  • Native species interactions
  • Heat waves
  • Storms
  • Habitat change/loss
  • Harvesting
  • Runoff/pollution
  • Other
⑬ Mediterranean-type Forests and Woodlands

Forests and woodlands in south-west WA extend over 10,000 square kilometres. They include the northern jarrah forest, tuart forest and woodlands, and banksia woodlands. The woodlands experience a Mediterranean-type climate, with cool, wet winters and dry, hot summers.

Vulnerable parts of these forest ecosystems experienced substantial die-off during an acute drought associated with an extreme heat wave in 2010-2011. But warming and drying of the region has been chronic since the mid-1970s. Impact was locally severe with, for example, up to 60% of Menzies banksia dying in woodlands on the Swan Coastal Plains.

Die-off sites illustrate what can happen when these forests and woodlands don’t have enough water. If die-off occurs at larger scales, forest resources and ecosystem services (such as carbon storage and seed resources) are threatened. Increased fire is also a risk, with associated damage to property and widespread pollution from bushfire smoke, as was recently experienced invFebruary 2021.

Pressures:

  • Rainfall changes
  • Temperature
  • Native species interactions
  • Heatwave
  • Storm
  • Fire
  • Habitat change/loss
⑭ Monaro Tablelands, South Eastern Highlands

The Monaro tablelands of south-east NSW are characterised by mosaics of grassy woodlands, grasslands and forests. These provide important habitat for a range of threatened plants and animal species, including koalas, spotted-tail quolls and dusky wood swallows, as well as 15 other smaller marsupial species, 95 bird species, 14 species of reptiles and more.

Like most other temperate grasslands and grassy woodlands in Australia, the Monaro ecosystems have declined since Indigenous burning regimes were replaced with livestock and feral herbivore grazing, along with clearing, cultivation and non-native plant invasions.

Tragically, since 2005, ribbon gums that once dominated the rolling plains have died in great numbers. This is likely associated with the Millennium drought, ongoing drying conditions and heatwaves, and exacerbated by invertebrate pest outbreaks. More recently, the catastrophic Black Summer bushfires burned extensive areas across the Monaro.

Widespread tree deaths are not only a loss of habitat for mammals, birds, reptiles and invertebrates, but significantly impact the economy through lack of shelter for livestock during the Monaro’s harsh winters and hot summers. The impacts on the landscape’s aesthetic also affects human well-being.

Pressures:

  • Rainfall changes
  • Temperature
  • Native species interactions
  • Heatwave
  • Fire
  • Habitat change/loss
  • Invasive species
  • Livestock/harvesting
⑮ Snowpatch Herbfields, Australian Alps

The snowpatch herbfields, made up of dwarf grasses and alpine herbs, are one of the rarest and most restricted ecosystems in Australia. They occur only on steep, south-east-facing slopes of alpine and high treeless subalpine zones, where snow persists into the spring and summer growing seasons.

Over the past 50 years, climate change has caused warming of almost 1°C, and substantial decrease in snow amount and depth, cover and persistence in the Australian alpine area. Fire has also become a major force with increased frequency, dry lightning storms and extreme fire weather. And feral horses trample vegetation and cause soil erosion. These pressures, and others, are collapsing the snow patch herbfield, replacing them with larger shrubs and grasses or just eroded ground.

The collapse of the snow patch herbfields highlights the plight of the Australian alpine ecosystems in general. The alps are regional economic powerhouses; visitors to the Australian Alps generate over A$1.3 billion and the area employs almost 20,000 people.

Pressures:

  • Rainfall changes
  • Temperature
  • Storm
  • Fire
  • Habitat change/loss
  • Invasive species
  • Human-lit fire
⑯ Mountain Ash Forests, Victorian Central Highlands

The mountain ash ecosystem in the Central Highlands of Victoria supports the world’s tallest flowering plants. It’s among the world’s most carbon-dense forests, supporting an array of threatened forest-dependent species, and generating almost all of the water for the 5 million inhabitants of Melbourne (as well as communities and agriculturalists north of the Great Divide).

The mountain ash ecosystem is under enormous environmental pressure from widespread and recurrent wildfire, coupled with widespread clear-cut logging. Extensive old growth forests once dominated the ecosystem, but now just 1.16% of the ecosystem (1,886 hectares of 170,400 ha) is old growth. The widespread young forest is highly flammable and at extreme risk of reburning at high severity. This is especially due to increased temperatures and greater numbers of days marked as “extreme” on the forest fire danger index.

The collapse will have severe economic and social effects. The value of water from the ecosystem is 25.5 times greater than the value of the timber generated from the same ecosystem. The collapse of the ecosystem also poses an enormous threat for long-term carbon storage, biodiversity conservation and the billion-dollar tourism industry in regional Victoria.

Pressures:

  • Rainfall changes
  • Temperature
  • Fire
  • Habitat change/loss
  • Invasive species
  • Other
⑰ Gondwanan Conifer forests, Tasmania

The Tasmanian Wilderness World Heritage Area covers 15,800 square kilometres. One of its key values is the high concentration of ancient invertebrate animals and plants endemic to Tasmania (often called “palaeoendemics”). An iconic example is the genus Athrotaxis in the conifer family, which is considered one of the oldest surviving plant lineages on Earth — a living fossil.

There are two existing species of Athrotaxis: Pencil pines (Athrotaxis cupressoides) and king billy pines (Athrotaxi selaginoides). Both are very slow growing and can live for more than 1,000 years.

Like other palaeoendemics, Athrotaxis species can’t tolerate frequent or intense fire, and are restricted to fireproof landscapes. Around 30% of the range of king billy pines have been lost in the last 200 years, and half the pencil pines were burnt in the summer of 1960/61 by uncontrolled fires set by graziers to renew grasslands during an intense drought.

Climate change now threatens these and other palaeoendemic species through increased fire activity due to more dry lightning storms and drought. In January 2016, lightning storms ignited numerous fires that destroyed about 1% of the remaining pencil pines. These trees are unlikely to ever return. The loss of palaeo-endemics will profoundly diminish the region’s natural and cultural values.

Securing the survival of palaeoendemics under climate change requires costly management interventions. These include establishing fire breaks, targeted planned burning to reduce fuel surrounding the palaeoendemic refuges and active restoration programs. The Tasmanian Government and the University of Tasmania currently trial these measures.

Pressures:

  • Rainfall changes
  • Temperature
  • Storm
  • Fire
  • Habitat change/loss
  • Invasive species
⑱ Subantarctic Tundra, Macquarie Island

The World Heritage sub-Antarctic Macquarie Island is home to unique alpine tundra. Cushion plants and bryophytes (such as mosses) dominate this treeless ecosystem. This uninhabited island ecosystem is one of the rarest on the planet, occurring on only eight other oceanic, sub-Antarctic islands. It’s home to many invertebrate species, and is the breeding ground of thousands of seabirds and marine mammals.

The ecosystem is rapidly collapsing due to mass die-off of cushion plants. Wind, rain and regional climate patterns all have changed in recent years, due to greenhouse gas increases and loss of ozone. There have also been increases in average wind speed, sunshine hours, and “evapotranspiration” (the sum of evaporation from the land surface plus transpiration from plants). Winter rainfall, cyclones, and a drier atmosphere also appear to have increased.

This has resulted in surface drying and raised surface evaporation of cushions and byrophytes in summer, leading to their death. With plants under such stress, an unknown disease has emerged that has now devastated much of this fragile ecosystem. And this has led to the ecosystem losing World Heritage values.

Pressures:

  • Rainfall changes
  • Temperature
  • Native species interactions
  • Flood
  • Storm
  • Other
⑲ East Antarctica Moss Beds, Windmill Islands (66°S), Vestfold Hills (68°S)

Antarctic vegetation is limited to the small ice-free areas covering less than 0.4% of the continent. Algae, cyanobacterial mats (dense “mats” of microbes), lichens and mosses dominate the flora, and there are no flowering plants. Moss beds only occur in areas where enough moisture is available during the short summer growing season. Some of the most extensive and well-developed vegetation in continental Antarctica support century old moss “forests” near Australia’s Casey Station. These lush, green moss turfs support the majority of invertebrates in the ecosystem.From 2000 to 2013, the species composition in these Antarctic moss beds changed significantly. Moss species that can tolerate drier conditions expanded, while endemic moss, better adapted to frequent pulses of water from melted ice, declined. By 2008, half the mosses that had been green and healthy in 2003 suffered water stress, turning red or grey under drying conditions.This drying is likely due to a combination of climate change and ozone thinning,making it windier and lowering temperatures around coastal East Antarctica in summer. This makes water less available during the growing season, and less water means less moss growth.

Historically, human activity associated with research stations has reduced local moss populations, but drying appears to be more widespread than just in the Casey region. Recovery has been limited, and in the summer of 2019-20, an Antarctic heatwave melted nearby snow banks and glaciers, causing flooding. Some grey mosses greened within a month. However, others that didn’t receive floodwater remained grey, stressed or dead.

Pressures:

  • Rainfall changes
  • Native species interactions
  • Heatwave
  • Storm
  • Habitat change/loss
  • Water extraction
  • Other

What to do about it?

Our brains trust comprises 38 experts from 21 universities, CSIRO and the federal Department of Agriculture Water and Environment. Beyond quantifying and reporting more doom and gloom, we asked the question: what can be done?

We devised a simple but tractable scheme called the 3As:

  • Awareness of what is important
  • Anticipation of what is coming down the line
  • Action to stop the pressures or deal with impacts.

In our paper, we identify positive actions to help protect or restore ecosystems. Many are already happening. In some cases, ecosystems might be better left to recover by themselves, such as coral after a cyclone.

In other cases, active human intervention will be required – for example, placing artificial nesting boxes for Carnaby’s black cockatoos in areas where old trees have been removed.

“Future-ready” actions are also vital. This includes reinstating cultural burning practices, which have multiple values and benefits for Aboriginal communities and can help minimise the risk and strength of bushfires.

It might also include replanting banks along the Murray River with species better suited to warmer conditions.

Some actions may be small and localised, but have substantial positive benefits.

For example, billions of migrating Bogong moths, the main summer food for critically endangered mountain pygmy possums, have not arrived in their typical numbers in Australian alpine regions in recent years. This was further exacerbated by the 2019-20 fires. Brilliantly, Zoos Victoria anticipated this pressure and developed supplementary food — Bogong bikkies.

Other more challenging, global or large-scale actions must address the root cause of environmental threats, such as human population growth and per-capita consumption of environmental resources.

We must rapidly reduce greenhouse gas emissions to net-zero, remove or suppress invasive species such as feral cats and buffel grass, and stop widespread land clearing and other forms of habitat destruction.

Our lives depend on it

The multiple ecosystem collapses we have documented in Australia are a harbinger for environments globally.

The simplicity of the 3As is to show people can do something positive, either at the local level of a landcare group, or at the level of government departments and conservation agencies.

Our lives and those of our children, as well as our economies, societies and cultures, depend on it.

We simply cannot afford any further delay.
The Conversation

The Conversation: To fix Australia’s environment laws, wildlife experts call for these 4 changes — all are crucial

By Don Driscoll (Deakin University), April Reside (The University of Queensland), Brendan Wintle (University of Melbourne), Euan Ritchie (Deakin University), and Martine Maron (The University of Queensland).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The independent review of Australia’s main environment law, released last week, provided a sobering but accurate appraisal of a dire situation.

The review was led by Professor Graeme Samuel and involved consultation with scientists, legal experts, industry and conservation organisations. Samuel’s report concluded Australia’s biodiversity is in decline and the law (the EPBC Act) “is not fit for current or future environmental challenges”.

The findings are no surprise to us. As ecologists, we’ve seen first hand how Australia’s nature laws and governance failure have permitted environmental degradation and destruction to the point that species face extinction. Even then, continued damage is routinely permitted.

And the findings aren’t news to many other Australians, who have watched wildlife and iconic places such as Kakadu and Kosciuszko national parks, and the Great Barrier Reef, decline at rates that have only accelerated since the act was introduced in 1999. Even globally recognisable wildlife, such as the platypus, now face a future that’s far from certain.

To reverse Australia’s appalling track record of protecting biodiversity, four major reforms recommended by Samuel must be implemented as a package.

1. Setting standards

One of the many failings of Australia’s environmental laws is there has never been a point beyond which no further impacts are acceptable.

The government almost never says “enough!”, whether it’s undermining wetlands for a new mine, or clearing woodlands for agriculture. Species continue to suffer death by a thousand cuts.

For example, the original distribution of the endangered southern black-throated finch of southern and central Queensland has shrunk to less than 10% due to land clearing and habitat degradation. Yet, further clearing was approved for coal mines, housing developments and sugar cane farms.

Biodiversity offsets, which aim to compensate for environmental damage by improving nature elsewhere, have for the most part been dreadfully ineffective. Instead they have been a tool to facilitate biodiversity loss.

The centre piece of Samuel’s report are proposed new National Environmental Standards. These would provide clear grounds for drawing a line in the sand on environmental damage.

Legal, rigorous enforcement of these standards could turn around Australia’s centuries-long record of destroying its natural heritage, and curb Australia’s appalling extinction rate — while also providing clarity and certainty for business.

Vital features of the standards Samuel recommends include:

  • avoiding impacts on the critical habitat of threatened species
  • avoiding impacts that could reduce the abundance of threatened species with already small and declining populations
  • no net reduction in the population size of critically endangered and endangered species
  • cumulative impacts must be explicitly considered for threatened species and communities
  • offsets can only be used as a last resort, not as a routine part of business like they are at the moment.

Under the proposed National Environmental Standards, any new developments would need to be in places where environmental damage is avoided from the outset, with offsets only available if they’re ecologically feasible and effective.

2. Greater government accountability

The federal environment minister can make decisions with little requirement to publicly justify them.

In 2014, then environment minister Greg Hunt controversially approved an exemption to the EPBC Act for Western Australia’s shark cull. This was despite evidence the cull wouldn’t make people safer, would harm threatened species and would degrade marine ecosystems. Hunt could shirk the evidence, deny the impacts and make a politically expedient decision, with no mechanisms in place to call him to account.

Samuel’s report states the minister can make decisions that aren’t consistent with the National Environmental Standards — but only as a “rare exception”. He says these exceptions must be “demonstrably justified in the public interest”, and this justification must be published.

We think this epitomises democracy. Ministers can make decisions, but they must be open to public and robust scrutiny and explain how their decisions might affect environments and species.

Improved accountability will be one of the many benefits of Samuel’s proposed independent Environment Assurance Commissioner, which would be backed up by an Office of Compliance and Enforcement. Samuel says these must be free from political interference.

These are absolutely critical aspects of the reforms. Standards that aren’t audited or enforced are as worthless as an unfunded recovery plan.

3. Decent funding

Samuel urges improved resourcing because to date, funding to protect species and the environment has been grossly inadequate. For example, experts recently concluded up to 11 reptile species are at risk of extinction in the next 50 years in Australia, and limited funding is a key barrier to taking action.

And it has been proven time and again that lack of action due to under-resourcing leads to extinction. The recent extinction of the Christmas Island forest skink, the Christmas Island pipistrelle, and the Bramble Cay melomys were all attributable, in large part, to limited funding, both in the administration of the threatened species listing process, and in delivering urgent on-ground action.

We need only look to the COVID pandemic to know when faced with emergencies, the government can rapidly deploy substantial sums of money for urgent interventions. And we are well and truly in an environmental emergency.

Spending to care for the environment is not a cost that delivers no return. It’s an investment that delivers substantial benefits, from creating jobs to cleaner water and healthier people.

4. Increase ecological knowledge

Engaging experts is key to achieving Samuel’s long-overdue proposed reforms. He calls for the immediate creation of expert committees on sustainable development, Indigenous participation, conservation science, heritage, and water resources. This will help support the best available data collection to underpin important decisions.

Ultimately, though, much more investment in building ecological knowledge is required.

Australia has more than 1,900 listed threatened species and ecological communities, and most don’t even have active recovery plans. Ecologists will need to collect, analyse and interpret new, up-to-date data to make biodiversity conservation laws operational for most threatened species.

For example, while we know logging and fires threaten greater gliders, there’s still no recovery plan for this iconic forest possum. And recent research suggests there are actually three — not simply one — species of greater glider. Suspected interactions between climate change, fire and logging, and unexplained severe population declines, means significant new effort must be invested to set out a clear plan for their recovery.

Samuel recommends Regional Recovery Plans be adequately funded to help develop some knowledge. But we suggest substantial new environmental capacity is needed, including new ecological research positions, increased environmental monitoring infrastructure, and appropriate funding of recovery plans, to ensure enough knowledge supports decision making.

Cherry picking recommendations condemns our species

Samuel’s report has provided a path forward that could make a substantial difference to Australia’s shocking track record of biodiversity conservation and land stewardship.

But Environment Minister Sussan Ley’s response so far suggests the Morrison government plans to cherry pick from Samuel’s recommendations, and rush through changes without appropriate safeguards.

If the changes we outlined above aren’t implemented as a package, our precious natural heritage will continue to decline.
The Conversation

The Conversation: It’s not too late to save them: 5 ways to improve the government’s plan to protect threatened wildlife

Numbats are among 20 mammals on the federal government’s priority list.

By Euan Ritchie (Deakin University), Ayesha Tulloch (University of Sydney), Don Driscoll  (Deakin University), Megan C Evans (UNSW), and Tim Doherty (University of Sydney).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia’s Threatened Species Strategy — a five-year plan for protecting our imperilled species and ecosystems — fizzled to an end last year. A new 10-year plan is being developed to take its place, likely from March.

It comes as Australia’s list of threatened species continues to grow. Relatively recent extinctions, such as the Christmas Island forest skink, Bramble Cay melomys and smooth handfish, add to an already heavy toll.

Now, more than ever, Australia’s remarkable species and environments need strong and effective policies to strengthen their protection and boost their recovery.

So as we settle into the new year, let’s reflect on what’s worked and what must urgently be improved upon, to turn around Australia’s extinction crisis.

How effective was the first Threatened Species Strategy?

The Threatened Species Strategy is a key guiding document for biodiversity conservation at the national level. It identifies 70 priority species for conservation, made up of 20 birds, 20 mammals and 30 plants, such as the plains-wanderer, malleefowl, eastern quoll, greater bilby, black grevillea and Kakadu hibiscus.

These were considered among the most urgent in need of assistance of the more than 1,800 threatened species in Australia.

The strategy also identifies targets such as numbers of feral cats to be culled, and partnerships across industry, academia and government key to making the strategy successful.

The original strategy (2015-20) was eagerly welcomed for putting the national spotlight on threatened species conservation. It has certainly helped raise awareness of its priority species.

However, there’s little evidence the strategy has had a significant impact on threatened species conservation to date.

The midterm report in 2019 found only 35% of the priority species (14 in total) had improving trajectories compared to before the strategy (pre-2015). This number included six species — such as the brush-tailed rabbit-rat and western ringtail possum — that were still declining, but just at a slower rate.

On average, the trends of threatened mammal and bird populations across Australia are not increasing.

Other targets, such as killing two million feral cats by 2020, were not explicitly linked to measurable conservation outcomes, such as an increase in populations of threatened native animals. Because of this, it’s difficult to judge their success.

What needs to change?

The previous strategy focused very heavily on feral cats as a threat and less so on other important and potentially compounding threats, particularly habitat destruction and degradation.

For instance, land clearing has contributed to a similar number of extinctions in Australia (62 species) as introduced animals such as feral cats (64).

In fact, 2018 research found agricultural activities affect at least 73% of invertebrates, 82% of birds, 69% of amphibians and 73% of mammals listed as threatened in Australia. Urban development and climate change threaten up to 33% and 56% of threatened species, respectively.

Other important threats to native Australian species include pollution, feral herbivores (such as horses and goats), very frequent or hot bushfires and weeds. Buffel grass was recently identified as a major emerging threat to Australia’s biodiversity, with the risk being as high as the threat posed by cats and foxes.

Five vital improvements

We made a submission to the Morrison government when the Threatened Species Strategy was under review. Below, we detail our key recommendations.

1. A holistic and evidence-based approach encompassing the full range of threats

This includes reducing rates of land clearing — a major and ongoing issue, but largely overlooked in the previous strategy.

2. Formal prioritisation of focal species, threats and actions

The previous strategy focused heavily on a small subset of the more than 1,800 threatened species and ecosystems in Australia. It mostly disregarded frog, reptile, fish and invertebrate species also threatened with extinction.

To reduce bias towards primarily “charismatic” species, the federal government should use an evidence-based prioritisation approach, known as “decision science”, like they do in New South Wales, New Zealand and Canada. This would ensure funds are spent on the most feasible and beneficial recovery efforts.

3. Targets linked to clear and measurable conservation outcomes

Some targets in the first Threatened Species Strategy were difficult to measure, not explicitly linked to conservation outcomes, or weak. Targets need to be more specific.

For example, a target to “improve the trajectory” of threatened species could be achieved if extinction is occurring at a slightly slower rate. Alternatively, a target to “improve the conservation status” of a species is achieved if new assessments rate it as “vulnerable” rather than “endangered”.

4. Significant financial investment from government

Investing in conservation reduces biodiversity loss. A 2019 study found Australia’s listed threatened species could be recovered for about A$1.7 billion per year. This money could be raised by removing harmful subsidies that directly threaten biodiversity, such as those to industries emitting large volumes of greenhouse gases.

The first strategy featured a call for co-investment from industry. But this failed to attract much private sector interest, meaning many important projects aimed at conserving species did not proceed.

5. Government leadership, coordination and policy alignment

The Threatened Species Strategy should be aligned with Australia’s international obligations such as the United Nation’s Sustainable Development Goals and the federal Environment Protection and Biodiversity Conservation Act 1999 (which is also currently being reviewed). This will help foster a more coherent and efficient national approach to threatened species conservation.

There are also incredible opportunities to better align threatened species conservation with policies and investment in climate change mitigation and sustainable agriculture.

The benefits of investing heavily in wildlife reach beyond preventing extinctions. It would generate many jobs, including in regional and Indigenous communities.

Protecting our natural heritage is an investment, not a cost. Now is the time to seize this opportunity.
The Conversation

Fabulous Fuzzballs – A collection of mammal tales tails

Mammals are extraordinarily successful animals, occupying Earth’s skies, seas and land, but many species also face significant threats and uncertain futures.

In this 35-minute presentation, I share stories about dingoes, bandicoots, tree kangaroos, bears and other mammals, highlighting their ecological and cultural importance, and how science is aiding their conservation.

The Conversation: Research reveals shocking detail on how Australia’s environmental scientists are being silenced

By Don Driscoll (Deakin University),Bob Pressey (James Cook University), Euan Ritchie (Deakin University), and Noel D Preece (James Cook University).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Ecologists and conservation experts in government, industry and universities are routinely constrained in communicating scientific evidence on threatened species, mining, logging and other threats to the environment, our new research has found.

Our study, just published, shows how important scientific information about environmental threats often does not reach the public or decision-makers, including government ministers.

In some cases, scientists self-censor information for fear of damaging their careers, losing funding or being misrepresented in the media. In others, senior managers or ministers’ officers prevented researchers from speaking truthfully on scientific matters.

This information blackout, termed “science suppression”, can hide environmentally damaging practices and policies from public scrutiny. The practice is detrimental to both nature and democracy.

Code of silence

Our online survey ran from October 25, 2018, to February 11, 2019. Through advertising and other means, we targeted Australian ecologists, conservation scientists, conservation policy makers and environmental consultants. This included academics, government employees and scientists working for industry such as consultants and non-government organisations.

Some 220 people responded to the survey, comprising:

  • 88 working in universities
  • 79 working in local, state or federal government
  • 47 working in industry, such as environmental consulting and environmental NGOs
  • 6 who could not be classified.

In a series of multiple-choice and open-ended questions, we asked respondents about the prevalence and consequences of suppressing science communication.

About half (52%) of government respondents, 38% from industry and 9% from universities had been prohibited from communicating scientific information.

Communications via traditional (40%) and social (25%) media were most commonly prohibited across all workplaces. There were also instances of internal communications (15%), conference presentations (11%) and journal papers (5%) being prohibited.

‘Ministers are not receiving full information’

Some 75% of respondents reported having refrained from making a contribution to public discussion when given the opportunity – most commonly in traditional media or social media. A small number of respondents self-censored conference presentations (9%) and peer-reviewed papers (7%).

Factors constraining commentary from government respondents included senior management (82%), workplace policy (72%), a minister’s office (63%) and middle management (62%).

Fear of barriers to advancement (49%) and concern about media misrepresentation (49%) also discouraged public communication by government respondents.

Almost 60% of government respondents and 36% of industry respondents reported unduly modified internal communications.

One government respondent said:

Due to ‘risk management’ in the public sector […] ministers are not receiving full information and advice and/or this is being ‘massaged’ by advisors (sic).

University respondents, more than other workplaces, avoided public commentary out of fear of how they would be represented by the media (76%), fear of being drawn beyond their expertise (73%), stress (55%), fear that funding might be affected (53%) and uncertainty about their area of expertise (52%).

One university respondent said:

I proposed an article in The Conversation about the impacts of mining […] The uni I worked at didn’t like the idea as they received funding from (the mining company).

Critical conservation issues suppressed

Information suppression was most common on the issue of threatened species. Around half of industry and government respondents, and 28% of university respondents, said their commentary on the topic was constrained.

Government respondents also reported being constrained in commenting on logging and climate change.

One government respondent said:

We are often forbidden (from) talking about the true impacts of, say, a threatening process […] especially if the government is doing little to mitigate the threat […] In this way the public often remains ‘in the dark’ about the true state and trends of many species.

University respondents were most commonly constrained in talking about feral animals. A university respondent said:

By being blocked from reporting on the dodgy dealings of my university with regards to my research and its outcomes I feel like I’m not doing my job properly. The university actively avoids any mention of my study species or project due to vested financial interests in some key habitat.

Industry respondents, more than those from other sectors, were constrained in commenting on the impacts of mining, urban development and native vegetation clearing. One industry respondent said:

A project […] clearly had unacceptable impacts on a critically endangered species […] the approvals process ignored these impacts […] Not being able to speak out meant that no one in the process was willing or able to advocate for conservation or make the public aware of the problem.

The system is broken

Of those respondents who had communicated information publicly, 42% had been harassed or criticised for doing so. Of those, 83% believed the harassers were motivated by political or economic interests.

Some 77 respondents answered a question on whether they had suffered personal consequences as a result of suppressing information. Of these, 18% said they had suffered mental health effects. And 21% reported increased job insecurity, damage to their career, job loss, or had left the field.

One respondent said:

I declared the (action) unsafe to proceed. I was overruled and properties and assets were impacted. I was told to be silent or never have a job again.

Another said:

As a consultant working for companies that damage the environment, you have to believe you are having a positive impact, but after years of observing how broken the system is, not being legally able to speak out becomes harder to deal with.

Change is needed

We acknowledge that we receive grants involving contracts that restrict our academic freedom. And some of us self-censor to avoid risks to grants from government, resulting in personal moral conflict and a less informed public. When starting this research project, one of our colleagues declined to contribute for fear of losing funding and risking employment.

But Australia faces many complex and demanding environmental problems. It’s essential that scientists are free to communicate their knowledge on these issues.

Public servant codes of conduct should be revised to allow government scientists to speak freely about their research in both a public and private capacity. And government scientists and other staff should report to new, independent state and federal environment authorities, to minimise political and industry interference.

A free flow of information ensures government policy is backed by the best science. Conservation dollars would be more wisely invested, costly mistakes avoided and interventions more effectively targeted.

And importantly, it would help ensure the public is properly informed – a fundamental tenet of a flourishing democracy.
The Conversation

The Conversation: Predators, prey and moonlight singing: how phases of the Moon affect native wildlife

Image credits: Wes Mountain / The Conversation

By Euan Ritchie (Deakin University), Courtney Marneweck (Clemson University), and Grant Linley (Charles Sturt University).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Humans have long been inspired and transfixed by the Moon, and as we’re discovering, moonlight can also change the behaviour of Australian wildlife.

A collection of recently published research has illuminated how certain behaviours of animals – including potoroos, wallabies and quolls – change with variation in ambient light, phases of the Moon and cloud cover.

One study found small mammals were more active on cloudy nights. Another found variation in moonlight led to differing amounts of species captured in non-lethal traps. And a study on willie wagtails found males just love singing on a full moon.

These findings are interesting from a natural history perspective. But they’ll also help ecologists and conservation scientists better locate and study nocturnal animals, and learn how artificial light pollution is likely changing where animals can live and how they behave.

Moonlit predator-prey games of hide and seek

Most of Australia’s mammals are nocturnal, and some smaller species are thought to use the cover of darkness to avoid the attention of hungry predators. However, there’s much we don’t know about such relationships, especially because it can be difficult to study these interactions in the wild.

In the relatively diverse mammal community at Mt Rothwell, Victoria, we examined how variation in ambient light affected species’ activity, and how this might influence species interactions. Mt Rothwell is a fenced conservation reserve free of feral cats and foxes, and with minimal light pollution.

Over two years, we surveyed the responses of predator and prey species to different light levels from full, half and new moon phases.

Potential prey species in our study included eastern barred and southern brown bandicoots, long-nosed potoroos, brushtailed rock-wallabies, and brushtail and common ringtail possums. Eastern and spotted-tailed quolls are their potential predators.

Just as we predicted, we found that while there does appear to be relationships between cloud cover, Moon phase and mammal activity, these interactions depend on the sizes and types of mammals involved.

Both predators and prey generally increased their activity in darker conditions.
Smaller, prey species increased their activity when cloud cover was higher, and predators increased their activity during the half and new moon phases.

This suggests their deadly game of hide and seek might intensify on darker nights. And prey might have to trade off foraging time to reduce their chances of becoming the evening meal.

What happens in the wild?

It’s important to acknowledge that studies in sanctuaries such as Mt Rothwell might not always reflect well what goes on in the wild, including in areas where introduced predators, such as feral cats and red foxes, are found.

Another recent study, this time of small mammals in the wilds of Victoria’s Mallee region, sheds further light on the situation. The authors tested if variation in weather and Moon phase affected the numbers of five small mammal species – Bolam’s mouse, common dunnart, house mouse, southern ningaui, and western pygmy possum – captured in pitfall traps.

Pitfall traps are long fences small animals can’t climb over or through, so follow along the side until they fall into a bucket dug in the ground. Ecologists typically use these traps to capture and measure animals and then return them to the wild, unharmed.

At more than 260 sites and over more than 50,000 trap nights, they found wind speed, temperature and moonlight influenced which species were caught and in what numbers.

For example, captures of a small native rodent, Bolam’s mouse, and carnivorous marsupial, southern ningaui, decreased with more moonlight, whereas captures of pygmy possums were higher with more moonlight.

Moonlight songbird serenades

Research from last month has shown even species normally active by day may change their behaviour and activity by night.

It’s not uncommon to hear bird song by night, including the quintessentially Aussie warbling of magpies. Using bioacoustic recorders and song detection software, these researchers show the willie wagtail – another of Australia’s most recogisable and loved birds – is also a nighttime singer, particularly during the breeding season.

While both male and female wagtails sing by day, it is the males that are most vocal by night. And it seems the males aren’t afraid of a little stage-lighting either, singing more with increasing moonlight, with performances peaking during full moons.

This work provides insight into the importance and potential role of nocturnal song for birds, such as mate attraction or territory defence, and helps us to better understand these behaviours more generally.

Moonlight affects wildlife conservation

These studies, and others, can help inform wildlife conservation, as practically speaking, ecological surveys must consider the relative brightness of nights during which work occurred.

Depending on when and where we venture out to collect information about species, and what methods we use (camera traps, spotlighting, and non-lethal trapping) we might have higher or lower chances of detecting certain species. And this might affect our insights into species and ecosystems, and how we manage them.

As dark skies become rarer in many places around the world, it also begs a big question. To what extent is all the artificial light pollution in our cities and peri-urban areas affecting wildlife and ecosystems?

Pipistrelle bats, for example, will be roughly half as active around well-lit bridges than unlit bridges. They’ll also keep further away from well-lit bridges, and fly faster when near them.

This means artificial light might reduce the amount and connectivity of habitat available to some bat species in urban areas. This, in turn could affect their populations.

Research is underway around the world, examining the conservation significance of such issues in more detail, but it’s another timely reminder of the profound ways in which we influence the environments we share with other species.

The authors  acknowledge Yvette Pauligk, who contributed to our published work at Mt Rothwell, and that the traditional custodians of this land are the Wathaurong people of the Kulin nation.
The Conversation

 

The Conversation: Cats wreak havoc on native wildlife, but we’ve found one adorable species outsmarting them

Long-nosed potoroo, Potorous tridactylus. Image credit: Zoos Victoria

 

By Euan Ritchie (Deakin University),Amy Coetsee (University of Melbourne),Anthony Rendall (Deakin University),Tim Doherty (University of Sydney), and Vivianna Miritis (University of Sydney).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Feral and pet cats are responsible for a huge part of Australia’s shameful mammal extinction record. Small and medium-sized ground-dwelling mammals are most susceptible.

But we’ve found one mammal in particular that can outsmart cats and live alongside them: the long-nosed potoroo.

These miniature kangaroo-like marsupials are officially listed as vulnerable. And after the recent devastating fires, extensive swathes of their habitat in southeastern Australia were severely burnt, leaving them more exposed to predators such as foxes and cats. But the true extent of the impact on their numbers remains unclear.

Amid the devastation, our new study is reason to be optimistic.

Using motion-sensing camera traps on the wildlife haven of French Island – which is free of foxes, but not cats – we found potoroos may have developed strategies to avoid prowling cats, such as hiding in dense vegetation.

If these long-nosed potoroos can co-exist with one of the world’s most deadly predators, then it’s time we rethink our conservation strategies.

Surviving cats with a deadly game of hide and seek

We conservatively estimated that between five and 14 cats lived in our study area (but it takes only one cat to eradicate a population of native animals).

Although cats were common here, we detected them less often in areas of dense vegetation. By contrast, this was where we found potoroos more often.

Long-nosed potoroos are nocturnal foragers that mainly, but not exclusively, feed in more open habitat before sheltering in dense vegetation during the day. But we found potoroos rarely ventured out of their thick vegetation shelter.

This may be because they’re trading off potentially higher quality foraging habitat in more open areas against higher predation risk. In other words, it appears they’ve effectively learnt to hide from the cats.

Another intriguing result from our study was that although potoroos and feral cats shared more than half of their activity time, the times of peak activity for each species differed.

Cats were active earlier in the night, while potoroo activity peaked three to four hours later. This might be another potoroo strategy to avoid becoming a cat’s evening meal.

Still, completely avoiding cats isn’t possible. Our study site was in the national park on French Island, and it’s likely cats saturate this remnant patch of long-nosed potoroo habitat.

It’s also possible cats may be actively searching for potoroos as prey, and indeed some of our camera images showed cats carrying young long-nosed potoroos in their mouths. These potoroos were more likely killed by these cats, rather than scavenged.

Cats are expert hunters

Cats are exceedingly difficult to manage effectively. They’re adaptable, elusive and have a preference for live prey.

The two most common management practices for feral cats are lethal control and exclusion fencing. Lethal control needs to be intensive and conducted over large areas to benefit threatened species.

And outside of predator-free sanctuaries, it must be ongoing. If control stops, cats can reinvade from surrounding areas.

Safe havens” – created through the use of exclusion fencing or predator-free islands – can overcome some of these challenges. But while exclusion fencing is highly effective, it can create other bad outcomes, including an over-abundance of herbivores, leading to excessive grazing of vegetation.

Fencing and islands can result in native animals rapidly losing their anti-predator behaviour. This can limit the success of reintroducing them to areas outside predator-free havens.

In any case, removing introduced predators might not be really necessary in places native species can co-exist. If long-nosed potoroos have learnt to live with feral cats, we should instead focus on how to maintain their survival strategies.

Why cat eradication isn’t always the best option

It’s clear cats are here to stay, so we shouldn’t simply fall back largely on predator eradication or predator-free havens as the only way to ensure our wildlife have a fighting chance at long-term survival.

Yes, for some species, it’s vital to keep feral predators away. But for others like long-nosed potoroos, conserving and creating suitable habitat and different vegetation densities may be the best way to keep them alive.

But perhaps most important is having predator-savvy insurance populations, such as long-nosed potoroos on French Island. This is incredibly valuable for one day moving them to other areas where predators – native or feral – are present, such as nearby Phillip Island.

In the absence of predators, native wildlife can rapidly lose their ability to recognise predator danger. Programs aimed at eradicating introduced predators where they’re co-existing with native species need to pay careful attention to this.
The Conversation

Aussie English: Australia’s wildlife extinction crisis

In this podcast with Pete Smissen for Aussie English, I talk about a wide range of topics including:

  • how I became a wildlife ecologist
  • why large predators died out in Australia
  • how Australia’s past and present ecology differs
  • the impact of feral species in Australia including cats, foxes, and rabbits
  • why bushfires are so bad for Australia wildlife
  • the Australian wildlife extinction crisis
  • and more!

The Conversation: One little bandicoot can dig up an elephant’s worth of soil a year – and our ecosystem loves it

Eastern Barred Bandicoot, Perameles gunnii. Image credit Museum Victoria Catching The Eye via Flickr

By Euan Ritchie, (Deakin University), Amy Coetsee (University of Melbourne), Anthony Rendall  (Deakin University), Duncan Sutherland (University of Melbourne), and Leonie Valentine (University of Western Australia).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

On Churchill Island, southeast of Melbourne, small cone-shaped, shallow holes (digs) puncture the grass. They’re widespread, and reveal moist soil below the surface. A soil heap at the entrance of a dig is a sign it was made recently.

Older digs are filled with leaves, grass, spiders, beetles and other invertebrates. They are made by hungry eastern barred bandicoots – small, roughly rabbit-sized digging marsupials – looking for a juicy worm or grub.

It turns out these bandicoot digs are far from just environmental curiosities – they can improve the properties and health of soils, and even reduce fire risk.

But eastern barred bandicoots are under threat from introduced predators like foxes and cats. In fact, they’re considered extinct in the wild on mainland Australia, so conservation biologists are releasing them on fox-free islands to help establish new populations and ensure the species is conserved long-term.

Our recent research on Churchill Island put a number on just how much the eastern barred bandicoot digs – and the results were staggering, showing how important they are for the ecosystem. But more on that later.

Why you should dig marsupial diggers

Digging mammals – such as bettongs, potoroos, bilbies and bandicoots – were once abundant and widespread across Australia, turning over large amounts of soil every night with their strong front legs as they dig for food or create burrows for shelter.

Their digs improve soil health, increase soil moisture and nutrient content, and decrease soil compaction and erosion. Digs also provide habitat for invertebrates and improve seed germination.

What’s more, by digging fuel loads (dry, flammable vegetation, such as leaves) into the soil, they can help bring down the risk of fire.

Rather than leaves and other plant matter accumulating on the soil surface and drying out, this material is turned over faster, entering the soil when the badicoots dig, which speeds up its decay. Research from 2016 showed there’s less plant material covering the soil surface when digging mammals are about. Without diggers, models show fire spread and flame height are bigger.

In fact, all their functions are so important ecologists have dubbed these mighty diggers “ecosystem engineers”.

Losing diggers leads to poorer soil health

Of Australia’s 29 digging mammals, 23 are between 100 grams and 5 kilograms. Most are at risk of cat and fox predation, and many of these are officially listed as threatened species by the International Union for Conservation of Nature.

Since European settlement, six of Australia’s digging mammals have gone extinct, including the lesser bilby, desert rat kangaroo and pig-footed bandicoots. Many others have suffered marked population declines and extensive range contraction through habitat destruction and the introduction of foxes and cats.

Tragically, the widespread decline and extinction of many digging mammals means soil and ecosystem health has suffered as well.

Soils that were once soft textured, easy to crumble, rich and fertile are now often compact, repel water and nutrient poor, impeding seed germination and plant growth. Fuel loads are also likely to be much higher now than in the past, as less organic matter is dug into the soil.

To date, most research on digging mammals has focused on arid environments, with much less known about how digging influences wetter (mesic) environments. But our recently published study on eastern barred bandicoots provides new insights.

Just how much do bandicoots dig anyway?

In 2015, 20 mainland eastern barred bandicoots were released onto Churchill Island in Victoria’s Westernport Bay.

On mainland Australia, fox predation has driven this species to near extinction, and it’s classified as extinct in the wild. All Victoria’s islands are beyond the historic range of eastern barred bandicoots, but fox-free islands could be how we recover them.

Introducing bandicoots on Churchill Island presented the perfect opportunity to quantify how they influence soil properties when digging for food.

To do this we recorded the number of digs bandicoots made each night and measured the volume of soil they displaced through digging. We also compared soil moisture and compaction within the digs, versus un-dug soil – and we didn’t expect what we found.

In one night on Churchill Island, one bandicoot can make 41 digs an hour. That’s nearly 500 digs a night, equating to around 13 kilograms of soil being turned over every night, or 4.8 tonnes a year. That’s almost as much as the average weight of a male African elephant.

So, an astonishing amount of soil is being turned over, especially considering these bandicoots typically weigh around 750 grams.

If you multiply this by the number of bandicoots on Churchill Island (up from 20 in 2015 to around 130 at the time of our study in 2017), there’s a staggering 1,690 kilos of soil being dug up every night. That’s some major earthworks!

However, we should note our study was conducted during the wetter months, when soils are typically easier to dig.

In summer, as soil becomes harder and drier on Churchill Island, digging may become more difficult. And bandicoots, being great generalists, feed more on surface invertebrates like beetles and crickets, resulting in fewer digs. So we expect in summer that soil is less disturbed.

Bandicoots might help agriculture too

All this digging was found to boost soil health on Churchill Island. This means eastern barred bandicoots may not only play an important role in ecosystem health and regeneration, but also potentially in agriculture by assisting pasture growth and condition, reducing topsoil runoff, and mitigating the effects of trampling and soil compaction from livestock.

The benefits bandicoot digs have across agricultural land is of particular importance now that eastern barred bandicoots have also been released on Phillip Island and French Island, and are expected to extensively use pasture for foraging.

These island releases could not just help to ensure eastern barred bandicoots avoid extinction, but also promote productive agricultural land for farmers.

So, given the important ecological roles ecosystem engineers like bandicoots perform, it’s also important we try to reestablish their wild populations on the mainland and outside of fenced sanctuaries so we can all benefit from their digging, not just on islands.
The Conversation

The Conversation: How you can help – not harm – wild animals recovering from bushfires

Building one of these watering pods can help thirsty wildlife, but it must be checked for safety and hygiene, and refilled regularly. Image credits: Arid Recovery

By Marissa Parrott (University of Melbourne), Dale Nimmo (Charles Sturt University) and Euan Ritchie (Deakin University).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Since July last year, bushfires have burned more than 7.7 million hectares of southeast Australia, putting many threatened species at increased risk of extinction.

Now that fires have been extinguished in some areas, surviving wildlife face other challenges, such as a lack of food, clean water and shelter, and more exposure to invasive predators.

Australians have helped raise millions of dollars to support Australia’s imperilled wildlife, such as to set up triage centres and evacuate threatened species like eastern bristlebirds and Macquarie perch.

But beyond the vital role of providing financial support, here are a few simple things individuals can do – and avoid – to help our native wildlife recover.

Animals need fresh water, but not from a bottle

Photos of well-meaning people offering water from bottles to animals, especially thirsty koalas, often go viral online. But this is not a safe way to help koalas.

Animals must be allowed to drink water themselves, rather than us pouring water into their mouths. Animals, such as koalas, can’t drink quickly and poured water can fill their lungs, leading to potentially fatal aspiration pneumonia.

Still, providing safe, fresh drinking water is one crucial and practical way we can help them as summer grinds on.

This is particularly important since recent storms have washed ash, sediment and chemicals from burnt infrastructure into waterways, contaminating many catchments.

Water should be stationed at ground level, in a shaded location safe from predators, and in trees for birds and tree-dwelling species like possums, gliders and koalas. Check out DIY guides for building drinking fountains, or “watering pods”, for wildlife.

Sticks and rocks should be placed in the water to allow small species, such as reptiles, to climb out if they fall in. Water must be checked and changed regularly to ensure hygiene and avoid the spread of disease. And pets must be kept away from these locations (especially cats).

What to do if you spot injured wildlife by the road

Authorities are searching the fire grounds for injured animals, and the public is reminded to avoid these areas until they’re confirmed as safe to enter.

But if you happen upon an injured survivor, what should you do?

First of all, call government agencies or trained wildlife rescuers, who can assist any injured wildlife.

Many animals may be in pain and frightened and some, including kangaroos, koalas and wombats, are potentially dangerous if approached. In urgent cases, such as when an animal is in obvious distress or has clear injuries, some animals can be carefully caught and wrapped in a towel, then placed in a well-ventilated, dark and secure box for quiet transport to wildlife veterinary hospitals for care.

Sadly, many animals are hit by cars during fires when they’re disoriented and panicked, and so it’s important to slow down in such areas.

You can also check animals found by roads for injuries and surviving young in pouches, and call authorities to assist. But always be careful of traffic when attending to animals on roadsides, and help other drivers be aware of you by putting hazard lights on and wearing bright clothes.

Don’t feed native wildlife, especially not peanut butter mixes

With so much vegetation burned away, supplementary feeding has gained attention following fires in New South Wales, Victoria and South Australia.

But feeding wildlife without expert advice and legal approval can do more harm than good.

Feeding inappropriate foods like processed foods, over-feeding, providing unhygienic foods or food stations, and attracting predators to food stations, can all be fatal for native wildlife.

Even some foods suggested online, such as bait balls (peanut butter mixes), can cause gastrointestinal issues for wildlife, potentially killing them. Similar issues can arise if wildlife are given some types of hay, vegetables, seeds, and fruits.

Supplementary feeding isn’t advised unless habitat and sources of food have been completely destroyed, and is only appropriate as a short-term emergency intervention until natural resources recover.

But leave it up to the experts and government agencies, which provide nutritionally suitable, specially developed and monitored food in extreme cases.

Somewhere to run and hide

In some cases, fire may mean native animals are more prone to predators killing and eating them. And, depending on the habitat, it may take months or even years for plants and animals’ homes to recover sufficiently to provide safety once again.

However, new approaches – such as building artificial shelters out of fencing wire and shade cloth – may help to buy species time, keeping small mammals, reptiles and other potential prey safe from hungry mouths. This could occur both on private and public land.

Show wildlife the money

Caring for wildlife after fires, whether they’re injured or have lost their homes, is a marathon, not a sprint. And given the scale of these fires, our wild neighbours need our increased support.

Often, the most helpful thing people can do is raise and donate funds to organisations, including Zoos Victoria and the Ecological Society of Australia.

Some wildife species, such as bristlebirds, corroboree frogs, and mountain pygmy-possums, are being pushed to the brink of extinction and may need long-term captive breeding and release programs, or investment in active management of wild populations (such as the newly constructed feral predator-free area for Kangaroo Island dunnarts).

We can all help to make a difference and protect our remarkable and unique wildlife that so desperately needs our help.The Conversation

The Conversation: Hunter, hunted: when the world catches on fire, how do predators respond?

Some predators, including red foxes, move into burnt areas after fires pass through. Image credit: Alexandre Roux via Flickr

By Euan Ritchie (Deakin University), Ayesha Tulloch (University of Sydney), Dale Nimmo (Charles Sturt University), Tim Doherty (Deakin University) and William Geary (Deakin University).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

2019 might well be remembered as the year the world caught fire. Some 2.9 million hectares of eastern Australia have been incinerated in the past few months, an area roughly the same size as Belgium. Fires in the Amazon, the Arctic, and California captured global attention.

As climate change continues, large, intense, and severe fires will become more common. But what does this mean for the animals living in fire-prone environments?

Our new research, published recently in the Journal of Animal Ecology, looked at studies from around the world to identify how predators respond to fire.

We found some species seem to benefit from fires, others appear to be vulnerable, and some seem indifferent. In a changing climate, it’s urgent we understand how fires affect predators – and hence potentially their prey –in order to keep ecosystems healthy.

Predators: the good and the bad

Large predators, like wolves and lions, often play important roles in ecosystems, regulating food webs by reducing the numbers or changing the behaviour of herbivores and smaller predators. Many large predators are in dire straits within their native range, while introduced predators, such as feral cats and red foxes, have spread to new regions, where they have devastated native wildlife .

Fires can offer new opportunities as well as problems to predators. Some predators take advantage of charred, more open landscapes to hunt vulnerable prey; others rely on thick vegetation to launch an ambush.

But until now, we have not known which predators are drawn to fire, which are repelled by it, and which don’t care either way. Synthesising information on how different kinds of predators (for example, large or small, pursuit or ambush) respond to fire is vital for both the conservation of top predators and to help protect native prey from introduced predators.

Some like it hot

Our research reviewed studies from around the world to identify how different vertebrate predators (birds, mammals and reptiles) respond to fire in different ecosystems.

We found 160 studies on the response of 188 predator species to fire, including wolves, coyotes, foxes, cats, hawks, owls, goannas and snakes, amongst others. The studies came from 20 different countries, although most were from North America or Australia, and focused on canine and feline species.

Some predators seem to like fire: they are more abundant, or spend more time in, recently burnt areas than areas that escape fire. Our review found red foxes (Vulpes vulpes) mostly responded positively to fire and become more active in burned areas.

Raptors have even been observed in Northern Australia carrying burning sticks, helping to spread fire and targeting prey as they flee the fire.

For other predators, fire is bad news. Following Californian wildfires, numbers of eastern racer snakes fell in burnt areas. Likewise, lions avoid recently burned areas, because they rely on dense vegetation from which to ambush prey.

The authors of the papers we reviewed thought food availability, vegetation cover, and competition with other predators were the most important things affecting species’ responses to fire.

But perhaps more surprising was that most species, including bobcats and the striped skunk, appeared largely unaffected by fire. Of the affected species, some (such as spotted owls) responded differently to fire in different places.

Overall, we found it is difficult to predict how a predator species will respond to fire.

We still have a lot to learn

Our results show while many predators appear to adapt to the changes that fires bring about, some species are impacted by fire, both negatively and positively. The problem is that, with a few exceptions, we will struggle to know how a given fire will affect a predator species without local knowledge. This means environmental managers need to monitor the local outcomes of fire management, such as fuel reduction burns.

There may be situations in which predator management needs to be coupled with fire management to help prevent native wildlife becoming fox food after fire. There has even been trials to see if artificial shelters can help protect native wildlife from introduced predators after fire.

Getting our knowledge base right

One thing that has hampered our research is the lack of contextual information in many studies. No two fires are the same – they differ in size, intensity, severity, and season – but these details are often absent. The literature is also biased towards dog-like and cat species, and there are few studies on the response of predators to fire in Africa, Asia, and South America.

It is important to note that some predator responses to fire may be overlooked due to the way experiments were carried out, or because monitoring happened too long after the fire.

Unifying how fire, predator numbers and environmental features are recorded would help future studies predict how predators might react to different types of fires in various situations.

As wildfires become more frequent and severe under climate change, understanding how fire intensity and frequency shapes predator populations and their prey will be critical for effective and informed ecosystem management and conservation.
The Conversation

The Conversation: Double trouble as feral horse numbers gallop past 25,000 in the Australian Alps

Feral horses are a growing problem for the NSW government. Image credit: Constantin Stanciu via Shutterstock

By Don Driscoll (Deakin University), David M Watson (Charles Sturt University), and Euan Ritchie (Deakin University).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Feral horse numbers have more than doubled in the past five years in the Australian Alps, according to results just released from the Australian Alps Feral Horse Aerial Survey. In one of the three survey blocks, North Kosciuszko, feral horse numbers have risen from an estimated 3,255 in 2014 to 15,687 in 2019, a near five-fold increase.

Scientists warned the government that very high numbers of horses would be the inevitable consequence of its inaction over horse management.

With no horses removed in 2017 or 2018, and only 99 removed this year, the population has been allowed to grow at about 23% per year, close to the maximum of about 25% known for feral horses.

More than just allowing numbers to increase, the NSW parliament legislated to protect feral horses within Kosciuszko National Park, effectively prioritising the preservation of horse populations over native alpine species and environmental values, where they are in conflict.

This was despite the strong advice from scientists, and amid substantial controversy around the origins and timing of the bill.

A potentially fatal feral horse problem

High feral horse numbers forced the closure of the popular Blue Waterholes campground in November, after substantial risks and several injuries to visitors were reported. Freedom of information requests were needed to bring to light crashes between cars and feral horses in Kosciuszko.

Despite the NSW government trying to keep this information from reaching the public, several incidents of feral horses being struck by vehicles have now been reported.

The community group Reclaim Kosci has warned it is only a matter of time before someone is killed in a collision with a feral horse unless numbers are drastically and rapidly reduced.

Besides impacts on people, the lack of effective feral horse policy in NSW has now set the stage for another mass animal welfare disaster.

With an estimated 25,318 feral horses distributed across the surveyed area (more than 7,400 square kilometres) of the Australian Alps, many thousands of horses will face starvation when the region next burns. This is predictable, inevitable and tragically also completely avoidable had effective feral horse control been implemented.

The prolonged drought hitting Australia has worsened the impacts of horses in the high country. Plants already struggling to survive are being trampled and grazed, and areas around standing water resemble feedlots.

These impacts will worsen over summer, both for the national park and the horses themselves, with herds suffering in the heat and struggling to survive. Horses starved to death along the snowy river in Kosciuszko in 2018.

Now many more animals are at risk of this fate because scientifically-supported solutions have been dismissed by NSW deputy premier John Barilaro.

Natural wildlife threatened

Evidence presented at the Kosciuszko Science Conference and research published earlier this year showed how a broad range of Alpine species and ecosystems were being affected by feral horses. These effects will now be more intense and occur across more of Australia’s ecologically sensitive and biodiverse alpine environments.

For example, the native broad toothed rat depends on dense vegetation along watercourses. With feral horses eating out or trampling plants along streams, these delightful, rotund fur-balls may lose their homes, and hence be more exposed to the elements and predators.

Right now, feral horses are reducing the habitat for these animals, causing already threatened populations to become smaller and more fragmented. As these small populations blink into extinction we can expect widespread losses across the national park.

Corroboree frogs will now be under enormous pressure. We already know feral horses destroy the wetlands these iconic yellow-striped black frogs depend on for breeding. This destruction will likely now impact many more swamps, reducing breeding success and reducing options for reintroduction of this critically endangered frog.

Another species, the Stocky Galaxias, teeters on the brink of extinction. This small native fish now only lives in a 3km stretch of stream in Kosciuszko National Park. Feral horses trample the river banks and rip out vegetation that causes silt to accumulate in the stream.

This is disastrous for the fish, which breed beneath boulders in the stream. If silt fills up the gaps beneath boulders, there is no place for the fish to lay eggs.

The high numbers of feral horses in Kosciuszko mean this process of stream destruction will likely worsen, potentially hastening the demise of this species unique to Kosciuszko National Park.

New management plan needed

Hope for change now rests with the new feral horse management plan being developed by the recently established Kosciuszko National Park Wild Horse Community Advisory Panel and the Wild Horse Scientific Advisory Panel. The community panel has expressed interest in working with the scientific panel, and such collaboration will be essential for making progress.

These committees will need to consider all options for resolving this human safety, animal welfare, and ecological crisis. Although trapping is crueller and many times more expensive than aerial culling, if the trapping effort is substantially ramped up across the park, it could potentially limit population growth and reduce horse numbers.

Aerial culling, despite being the most cost-effective and humane method to lower the horse population size and reduce impacts, is misrepresented by the pro-brumby lobby and sections of the media as cruel, and hence has been deemed unacceptable. These costs, and animal welfare and political trade-offs, must be carefully considered by the committees.

The scientific committee said the draft plan for action will be open for comment in February 2020 to meet NSW environment minister Matt Kean’s deadline for a final plan by May 1, 2020. This rapid timeframe is absolutely essential, as the increase of feral horses in the Alpine National Park will not abate any time soon without urgent and substantial control measures.
The Conversation

Science communication in a post‐truth world: promises and pitfalls

Authors: R Keller Kopf, Dale G Nimmo, Euan G Ritchie, and Jen K Martin

Published in: Frontiers in Ecology and the Environment

The mass decline of biodiversity in this post-truth era means that reliable and influential conservation science communication is more important than ever.

In this era, truths and lies are increasingly difficult to distinguish, posing a major challenge to science communication. As a result, conservation scientists and managers are grappling with new ways of countering misinformation and sharing factual information.

Facebook, Twitter, YouTube, Instagram, blogs, online news outlets, webcomics, and satirical articles all provide communication opportunities, but we still have a poor understanding of which of these are most effective, and when and where to best communicate science…

Kopf RK, Nimmo DG, Ritchie EG, Martin JK (2019) Science communication in a post-truth world: promises and pitfalls. Frontiers in Ecology and the Environment PDF DOI

The Conversation: Academia can help humans and large carnivores coexist

In Romania, wolves live in the same landscapes as shepherds. Image credit: Vlada Cech via Shutterstock.

By Euan Ritchie (Deakin University), Abi Vanak (University of KwaZulu-Natal), Benjamin Scheele (Australian National University), Laurentiu Rozylowicz, and Tibor Hartel

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Bears, wolves, lions and other top predators have a long history of conflict with people – they can threaten our safety and kill livestock.

In our recent study, published in Conservation Biology, we outline how conventional conservation approaches are unlikely to lead to effective coexistence between humans and large carnivores in human-dominated landscapes.

This wicked problem encompasses public safety, agriculture, conservation, animal welfare, and more. Each facet is commonly managed by a different institution working in isolation – often failing to reflect the reality of our highly connected world.

Academia can help foster better institutional arrangements, especially in places like Romania, India and Brazil, where there are substantial populations of people and large carnivores in shared spaces.

In Romania, for instance, bears and wolves live in the same places used by shepherds and their livestock. Guardian dogs typically help protect livestock from being attacked.

Similarly, Australia’s own dingo occurs across agricultural and pastoral regions, with sentiments ranging from protected native species to disliked pest.

Why institutions fail carnivore-human relationships

From bears in Romania to dingoes in Australia, large carnivores are found in an array of places. This means they regularly affect the interests of a range of institutions, from agriculture to forestry.

But the current arrangements are poorly suited to facilitate a peaceful coexistence between humans and large carnivores.

Typically, institutions focus on a small subset of concerns. Forestry and agricultural sectors, for instance, may not feel responsible for large carnivore conservation because they are primarily interested in timber and agricultural production.

On the other hand, institutions for transport, energy and border security might be indifferent towards large carnivores. But they can negatively affect these animals if they put up barriers restricting predator movement and inappropriately handle roadkill.

These compartmentalised, and often conflicting, institutions are poorly suited to helping wildlife, especially when large carnivores, such as leopards, wolves and bears, live in human-dominated regions.

A role for academia

Academia has solutions to offer.

Most environment-related professionals, like foresters, wildlife managers and conservation biologists, are trained in a range of academic institutions. Unfortunately, they are often taught narrowly within their sector or discipline.

However, all these future professionals passing through the same institutions provides a great opportunity for a broad change in how we approach difficult conservation challenges and conflict with wildlife.

There are at least three ways in which academia could help address the challenges of human and large carnivore coexistence:

1. Break down the silos

Academic institutions need to create special centres to better support teaching and research across different disciplines.

Conservation – and, on a broader level, how humans should relate to the natural world – cannot be siloed away in wildlife management courses.

2. Broaden the view

We need to actively foster a broader perspective that does not see large carnivores as an “enemy”, while still safeguarding human life. This is a complex and multifaceted challenge.

By working across disciplines, universities have the chance to actively foster this broader perspective. This may seem like a nebulous point, but the collapse of species around the world has highlighted how ineffective our current approach to conservation is. We need to move beyond tinkering around the edges of our extinction crisis.

Conservation policy is already equipped to address individual targets such as regulating carnivore populations and legally protecting species. It is the larger aim of changing norms, challenging values and ensuring all these various institutions are pulling in the same direction that we need to tackle – a tactic called the “leverage points approach”.

3. Work outside the academy

Academia could support existing collaborations. When people with shared interests come together to pool knowledge and address a particular issue, we call it a community of practice. Academia can contribute to these communities by offering the skills and expertise of its graduates, but also broader social and industry connections (where required), knowledge sharing, collaborative research, education and technological innovation.

We need big carnivores and they need us

Large carnivores are critical for the health of ecosystems globally, and we need to provide them with enough space and tolerance to survive.

The ongoing controversy regarding the management of the dingo, Australia’s largest land-based predator (aside from humans), provides a perfect test case for this new approach to managing human-wildlife conflict.

If we can achieve more harmonious relations with the world’s top predators, many of the myriad other species that coexist with them are also likely to benefit from both better habitat management and conservation and the important ecological effects large carnivores can have, such as keeping herbivore and smaller predator numbers in check. This can be a positive step towards addressing Earth’s mass extinction crisis.

The authors would like to thank John Linnell, Senior Research Scientist at the Norwegian Institute for Nature Research, for his contribution to this article.
The Conversation

The Conversation: We must rip up our environmental laws to address the extinction crisis

The Christmas Island pipistrelle (Pipistrellus murrayi) became extinct in 2009. Image credit Lindy Lumsden

By Don Driscoll, Deakin University; Desley Whisson, Deakin University; Euan Ritchie, Deakin University; Mike Weston, Deakin University; Raylene Cooke, Deakin University, and Tim Doherty, Deakin University.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Humans are causing the Earth’s sixth mass extinction event, with an estimated one million species at risk of extinction.

Addressing this crisis requires transformative change, including more effective environmental law and implementation.

Improved legislation is one of five main levers for realising change identified in the recent United Nation’s global biodiversity report and the key lesson arising from the Senate’s interim report into Australia’s faunal extinction crisis.

The Senate’s interim report, based on 420 submissions and five hearings, shows Australia is a world leader in causing species extinctions, in part because Australia’s systems for conserving our natural heritage are grossly inadequate.

To allow the continued erosion of this continent’s spectacular and remarkable array of globally unique plants and animals is a travesty of the highest order.

Inadequate protections

One of the problems is species may decline from common to extinct quite rapidly – faster than the time it takes species to be listed as threatened under the federal Environment Protection and Biodiversity Conservation (EPBC) Act.

The Christmas Island forest skink was formally listed as a threatened species only four months before the last individual died in captivity, but 15 years after the decline was first reported.

Extinction of the forest skink, Bramble Cay melomys and Christmas Island pipistrelle between 2009 and 2014 may have been averted if the risk was formally recognised in a more timely manner and effective conservation actions, such as captive breeding programs, were implemented.

Currently, if a species is not listed, it is not a “matter of national environmental significance” and federal agency staff generally have no legal basis for acting to protect it.

The black-throated finch has been listed as threatened on the EPBC Act for 14 years and during this time 600,000 ha of potential finch habitat has been destroyed. Worse still, five large coal mines, including the Carmichael Coal Mine, have been given approval (pending environmental conditions being met in Queensland) to clear more than 29,000 ha of black-throated finch habitat in one of its final strongholds, the Galilee Basin.

Coal mining will drive these finches into the critically endangered threat category, pushing them perilously close to extinction, and all with federal government approval.

The controversial Toondah Harbour development in Brisbane is another example of how ministerial discretion can allow disastrous environmental outcomes. The project plans to build 3,600 apartments on wetlands that provide habitat for migratory waterbirds, including the critically endangered eastern curlew.

Despite being described as “clearly unacceptable” by the federal environment department and knocking it back twice, the minister allowed a third submission to proceed for further assessment.

It was reported this decision was made in the context of legal threats and donations from the developer in question. If true, this context would make it very difficult to make impartial decisions that protect biodiversity, as environmental law intends.

Increasing ministerial discretion was a key result of 2007 amendments to the EPBC act, which meant recovery plans were no longer required for threatened species.

The amendment allowed the minister to develop “conservation advices” instead of recovery plans. This amendment downgraded protections for threatened species because a minister can legally make decisions that are inconsistent with conservation advice, but not a recovery plan.

New environmental legislation

Based on these examples and many others that demonstrate the failings of current laws, the interim report concludes that we should rip up the EPBC act and develop stronger and more effective environmental legislation.

This includes establishing an independent Environmental Protection Agency to ensure enforcement of environmental laws, and, in a forward-looking addition by the Greens senators, an independent National Environmental Commission to monitor effectiveness of environmental legislation and propose improvements.

Australia needs a well-resourced, independent umpire for the environment, with powers to investigate environmental concerns and scrutinise government policy, akin to New Zealand’s Parliamentary Commissioner for the Environment. While Australia’s Threatened Species Commissioner is an excellent champion for the environment, this role provides no ability to question government actions regarding environmental protection and nature conservation.

Although replacing the EPBC act with new legislation may seem like a radical step to some (but not all), the interim Senate report, and the global UN report, have independently concluded major reform is essential. We are not in a moment of time when tweaking the current system will do the trick.

Changing Australia’s environmental legislation is a relatively minor update compared with the fundamental social and economic changes recommended by the UN report.

Such changes are already recommended by scientific societies like the Ecological Society of Australia, non-government organisations like Birdlife Australia and the Australian Conservation Foundation, and are demanded by a growing section of society. New, fit-for-purpose legislation must be enforceable, apolitical and responsive.

Opinion polls show that the level of environmental concern is higher in Australia than in other countries , while 29% of ABC Vote Compass respondents ranked the environment as the most important issue, up from 9% in 2016.

This groundswell of environmental concern has spawned mass protest movements like Extinction Rebellion. Young Australians also have shown their concern. In March 2019, thousands of school students took part in 50 rallies across the country to protest against “the destruction of our future”.

Decisions about what and how much we buy, what we eat, how much we travel and by what means, and family size, all contribute to our environmental footprints, and are the fundamental instigators of the biodiversity crisis.

However, we must also look to our political leaders to support effective change. The simplest and most powerful action you can take to reverse the extinction crisis is to vote for a party with policies best aligned with credible scientific advice on how we can get out of this mess.
The Conversation

Reblog: Minister, why is the dingo no longer ‘fauna’ ?

ConservationBytes.com

dead dingoSo, a few of us have just submitted a letter contesting the Western Australia Government’s recent decision to delist dingoes as ‘fauna’ (I know — what the hell else could they be?). The letter was organised brilliantly by Dr Kylie Cairns (University of New South Wales), and she and the rest of the signatories have agreed to reproduce the letter in full here on ConservationBytes.com. If you feel so compelled, please voice your distaste of this decision officially by contacting the Minister (details below).

CJA Bradshaw

Honourable Stephen Dawson MLC
Minister for Environment; Disability Services
Address: 12th Floor, Dumas House
2 Havelock Street, WEST PERTH WA 6005
(minister.dawson@dpc.wa.gov.au)

cc: Department of Biodiversity, Conservation and Attractions (biodiversity@dbca.wa.gov.au)
cc: Brendan Dooley (brendan.dooley@dpc.wa.gov.au)

Dear Minister,

The undersigned welcome the opportunity to comment on and recommend alteration of the proposed section (9)(2) order of the Biodiversity Conservation Act…

View original post 1,247 more words

The Conversation: Why the WA government is wrong to play identity politics with dingoes

Western Australian Minister for the Environment Stephen Dawson has declared that the dingo, Australia’s native canine, will no longer be classified as native. Image credit Leo via Flickr.

By Bradley Smith (CQUniversity Australia), Euan Ritchie (Deakin University) and Lily van Eeden, (University of Sydney).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia’s Commonwealth Coat of Arms depicts two iconic native animals – the kangaroo and the emu. Both are unquestionably fair dinkum Aussies, unique to this continent and having lived here for a very long time. A “very long time”, according to Australian legislation (the EPBC Act 1999), is any species having been present since before the year 1400.

But in Western Australia, under the state’s Biodiversity Conservation Act 2016, no native animal is guaranteed protection. The Act includes a caveat whereby the relevant minister may determine that a native species is in fact, not.

This week, WA’s environment minister Stephen Dawson did just that, declaring that from January 1, 2019, the dingo, Australia’s native canine, will no longer be classified as native fauna.

The dingo does meet the federal government’s criterion, having lived in Australia as a wild canid for an estimated 5,000 years. But under the planned changes in WA, the dingo will lose its current listing as “unprotected fauna”, and will from next year be considered indistinguishable from either the common domestic dog or feral dogs.

What is a species anyway?

According to the biological species concept, a species is a group that has the ability to interbreed and produce viable, fertile offspring. Dingoes, dogs and other canids do interbreed (or “hybridise”), and indeed this is one of the key reasons why the pure dingo is listed as vulnerable by the International Union for the Conservation of Nature.

But this ability to hybridise is also one of the main justifications cited by the WA government in its decision to revoke the dingo’s citizenship (the fact sheet has since been removed from the website, but can be accessed here). The rationale is that if dingoes and dogs are technically the same species, why should dingoes get special treatment?

However, the biological species concept is problematic when applied to canids. If you lump dingoes and dogs together because they readily interbreed, then logically we must do the same for wolves, coyotes, jackals or other canids that can also interbreed (and have done for millenia).

It’s hard to imagine anyone seriously suggesting that a grey wolf and a pug are the same species. This suggests that this criterion alone is insufficient to solve the conundrum. Indeed, there are at least 32 different species concepts, clearly illustrating the difficulty of defining a single rule by which all organisms should abide.

Despite this, a recent paper that argues the biological species concept should be applied to dingoes, was cited as supporting evidence by the WA government. Adopting this narrow interpretation of taxonomy is perhaps somewhat premature. It ignores other investigations that provide evidence to the contrary. Given the contention around defining species, it seems unwise to determine the species status of dingoes independently of other, more comprehensive evidence and argument.

Distinguishing dingoes

All canids share similarities, but their differences are also many and marked. The dingo can be distinguished from other dogs in various ways: their appearance, anatomy, behaviour, their role in ecosystems, and their genetics (their evolutionary history and degree of relatedness to other species). Dingoes seem to be largely devoid of many of the signs of domestication.

It is therefore reasonable for the dingo to be considered separately from wolves and domestic dogs, while also acknowledging that they all occupy the same broad species classification, Canis lupus.

Having lived in Australia as free-living, wild populations for around 5,000 years almost exclusively under the forces of natural selection, and separately from any other dog lineage until European arrival, there is no notion of the dingo as a domestic animal gone feral. To classify dingoes as nothing more than “feral domestic dogs” expunges their unique, long and quintessentially wild history. Dingoes are not ecologically interchangeable with any other type of dog, either wild or domesticated.

Labelling the dingo as a feral domestic dog changes their legal status and removes any current obligations for developing appropriate management plans. This demotion of status could lead to intensified lethal control. Indeed, control may even be legally mandated.

In the absence of thylacines, mainland Tasmanian devils, and other apex predators, the ecological role that the dingo plays in the Australian landscape is vital. Dingoes help to control kangaroo and feral goat populations, and in some cases foxes and cats as well.

Given WA’s remoteness, it remains one of the few bastions of pure dingoes, and as such it presents an opportunity to seek ways to protect them rather than pave the way for their removal. The WA government’s decision also sets a dangerous precedent for the management of dingoes, and indeed other contentious native wildlife, elsewhere in Australia.

How we choose to classify plants and animals might sound like dry science. But it has genuine implications for policy, management and conservation. Our scientific naming systems are vital for helping to organise and understand the rich biological diversity with which we share the planet, but it is important to remember that these systems are informed not just by biology but also by our values.

In this case, economic and political interests appear to have been favoured over wildlife preservation, and given Australia’s unenviable conservation record this is deeply concerning.
The Conversation