Category Archives: Media

The Conversation: The dingo is a true-blue, native Australian species

Canis dingo: not a wolf, and not just another dog.

By Bradley Smith (CQUniversity Australia), Corey JA Bradshaw (Flinders University), Euan Ritchie (Deakin University), Justin W Adams (Monash University), Kylie M Cairns (University of New South Wales), and Mathew Crowther (University of Sydney).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Of all Australia’s wildlife, one stands out as having an identity crisis: the dingo. But our recent article in the journal Zootaxa argues that dingoes should be regarded as a bona fide species on multiple fronts.

This isn’t just an issue of semantics. How someone refers to dingoes may reflect their values and interests, as much as the science.

How scientists refer to dingoes in print reflects their background and place of employment, and the Western Australian government recently made a controversial attempt to classify the dingo as “non-native fauna”.

How we define species – called taxonomy – affects our attitudes, and long-term goals for their conservation.

What is a dog?

Over many years, dingoes have been called many scientific names: Canis lupus dingo (a subspecies of the wolf), Canis familiaris (a domestic dog), and Canis dingo (its own species within the genus Canis). But these names have been applied inconsistently in both academic literature and government policy.

This inconsistency partially reflects the global arguments regarding the naming of canids. For those who adhere to the traditional “biological” species concept (in which a “species” is a group of organisms that can interbreed), one might consider the dingo (and all other canids that can interbreed, like wolves, coyotes, and black-backed jackals) to be part of a single, highly variable and widely distributed species.

But the “biological” species concept used to name species came about long before modern genetic tools, or even before many hybrid species were identified by their DNA (such as the “red wolf,” an ancient hybrid of grey wolves and coyotes found in the southeastern United States).

Few people would really argue that a chihuahua, a wolf, and a coyote are the same species. In reality there are many more comprehensive and logical ways to classify a species. In our latest paper we argue that a holistic approach to defining species is essential in the case of the dingo and other canids.

Our work shows conclusively that dingoes are distinct from wild canids and domestic dogs based on many different criteria.

Truly wild

The first criterion is that dingoes are wild animals, and live completely independent from humans. This is fundamentally different to domestic, feral, or wild dogs, which must live near human settlements and rely on humans for food and water in some way to survive.

Yes, the dingo might have arrived in Australia with humans, and we know that Aboriginal Australians have had a close relationship with dingoes following the latter’s arrival. But neither of these observations excludes dingoes from being wild.

For example, a relationship with humans does not constitute the rigorous definitions of domestication. Consider the red fox (Vulpes vulpes), which was also introduced to Australia by people and are now free-ranging: they are also not considered to be domesticated. Neither are wild animals such as birds that we feed in our backyards domesticated simply because they are sometimes fed by us.

Ecological role

In fact, dingoes have been living wild and independently of humans for a very long time — they have a distinct and unique evolutionary past that diverged some 5 to 10 thousand years ago from other canids. This is more than enough time for the dingo to have evolved into a naturalised predator now integral to maintaining the health of many Australian ecosystems.

Dogs do not have the brain power or body adaptations to survive in the wild, and they cannot play the same ecological role as dingoes. From this ecological perspective alone, the two species are not interchangeable. Dingoes are Australia’s only large (between 15-20 kg), land-based predator, and as such play a vital role in Australia’s environment.

Shape and size

Viewed alone, the overall shape of the body and skull does not easily distinguish wild canids from dogs, mainly because of the sheer diversity among different breeds of domestic dogs.

But there are some important body differences between free-ranging dogs and dingoes, mainly in the skull region (as shown here and here).

Behaviour

Dingoes (and other truly wild canids) have some fundamentally unique behaviours that set them apart from dogs (although like shape, there are often exceptions among the artificial dog breeds). For example, dingoes have significantly different reproductive biology and care-giving strategies.

There are also differences in brain function, such as in the way the two species solve problems, and dingoes and dogs communicate differently with humans.

Genetics

While dingoes and dogs obviously share an ancestral relationship, there is a lot of genetic data to support the distinction between dingoes and dogs.

While dingoes share ancestry with ancient Asian dogs from 10,000 years ago, the dingo has been geographically isolated from all other canids for many thousands of years, and genetic mixing has only been occurring recently, most probably driven by human intervention.

Since the 1990s, genetic markers have been in widespread use by land managers, conservation groups, and researchers to differentiate dingoes from domestic dogs.

What’s at stake?

Even acknowledging the dingo’s uncertain and distant past, lumping dingoes and dogs together is unjustified.

Labelling dingoes as “feral domestic dogs” or some other misnomer ignores their unique, long, and quintessentially wild history in Australia.

Inappropriate naming also has serious implications for their treatment. Any label less than “dingo” can be used to justify their legal persecution.

Further loss of dingoes could have serious, negative ecological consequences, including potentially placing other Australian native animals at increased risk of extinction.The Conversation7

The Wire: Experts call for dramatic decrease in land clearing

More than 300 scientists, practitioners and students have made a stark declaration to Australian lawmakers to curb the dramatic pace of land clearing across the nation.

The experts say that irreparable damage has already been done, and that the continued pace of current land clearing can make us more prone to bushfires and drought, accelerate the impact of climate change and severely impact Australian farmers.

Dingo dinners: what’s on the menu for Australia’s top predator?

By Tim Doherty (Deakin University), Chris Dickman (University of Sydney), Dale Nimmo (Charles Sturt University), Euan Ritchie (Deakin University) and Thomas Newsome (University of Sydney).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The dingo is Australia’s largest land-based predator, occurring across most of the mainland and on many nearshore islands.

Our new research, published in the journal Mammal Review, reveals the breadth and diversity of dingo diets across the continent.

We compiled and analysed 73 sets of data, containing details of more than 32,000 dingo droppings or stomach contents, to document the range of different species that dingoes eat, and how their diets vary between different environments.

A wide-ranging diet

We found that dingoes eat at least 229 vertebrate species. This includes 62 small mammals (less than 500 grams in mass), 79 medium-sized and larger mammals, 10 species of hoofed mammals, 50 birds and 26 reptiles. Dingoes also eat insects, crustaceans, centipedes, fish and frogs.

The true number of species is likely to be much higher because dingo diets have been poorly studied in many parts of Australia, such as Cape York Peninsula.

Large (at least 7 kg) and medium-sized (0.5 to 6.9 kg) mammals were the most common components of dingo diets, followed by small mammals, rabbits, arthropods, reptiles, birds and hoofed animals.

Average occurrence of eight food types in the diet of dingoes. Values represent the percentage of droppings/stomachs that contained each food type.

A range of introduced pest species also feature in dingo diets, including deer, goats, rabbits, hares, black rats, house mice, foxes and cats. In recent decades, the occurrence of sambar deer in dingo diets has increased as this invasive species has expanded its range.

Dingoes also eat sheep and cattle, although dietary samples are unable to distinguish between predation and scavenging, and hence tell us little about dingo impacts on livestock production. Dietary samples also do not reveal instances of dingoes killing livestock without eating them.

Regional variation

We found that what dingoes eat depends on where they live. For instance, in arid central Australia, birds, reptiles, rabbits, small mammals and insects form major parts of dingo diets. In contrast, these food groups are less important in temperate and subtropical eastern Australia, where medium-sized and large mammals such as kangaroos, bandicoots and possums are more important.

Frequency of different food groups in dingoes’ diet. Each circle represents a study and is scaled proportionally with dietary occurrence; larger circles represent a higher frequency of that food type. Top row: arthropods and small mammals (less than 500 g); middle row: reptiles and medium-sized mammals (0.5-6.9kg); bottom row: rabbits and large mammals (at least 7 kg).

The higher occurrence of medium-sized mammals in dingo diets in eastern Australia may be due to the lower extinction rates of native mammals there. In contrast, central Australia is a global mammal extinction hotspot, which probably accounts for the low occurrence of medium-sized mammals in dingo diets in arid and semi-arid areas.

Nonetheless, one medium-sized mammal was a major food item for dingoes in arid areas: the European rabbit. In some areas, more than 50% of dingo droppings or stomachs contained the remains of this invasive species. It is possible that native medium-sized mammals previously constituted a major part of dingo diets in arid Australia, but have since been replaced by rabbits.

Local prey availability plays a major role in determining what dingoes eat. For instance, in the Tanami Desert, reptiles were most common in dingo diets during warmer months when they are most active. However, very few studies have collected data on prey availability, partly because of the sheer number of different animals that dingoes eat.

Threatened species

Dingoes kill or eat at least 39 native species that are classed as threatened or near-threatened on the IUCN Red List. These include the northern quoll, golden bandicoot and bridled nailtail wallaby.

This tally is higher than the number of threatened species in feral cat diets (based on a previous study that used similar methods), even though cats eat almost twice as many different species overall as dingoes (400 and 229, respectively).

Today’s threatened native species co-existed with dingoes for a long time before European colonisation, which means they were able to withstand dingo predation without going extinct.

But now a combination of small population sizes of some threatened species and exacerbating factors such as habitat loss, foxes and cats means some threatened species could be vulnerable to even low levels of dingo predation. Predation by dingoes should therefore be a key consideration when attempting to conserve or restore threatened species.

Dietary studies are one way we can understand how dingoes interact with other species. Our study also highlights that we still have much to learn about our native top predator. In many parts of Australia, the favourite foods of dingoes are still a mystery.

The authors acknowledge the contribution of Naomi Davis, Dave Forsyth, Mike Letnic, Russell Palmer, Joe Benshemesh, Glenn Edwards, Jenny Lawrence, Lindy Lumsden, Charlie Pascoe, Andy Sharp, Danielle Stokeld, Cecilia Myers, Georgeanna Story, Paul Story, Barbara Triggs, Mark Venosta and Mike Wysong to this research.
The Conversation

The Conservation: Guardian dogs, fencing, and ‘fladry’ protect livestock from carnivores

Livestock guardian dog breeds, such as Maremma, are often raised with and trained to consider themselves part of a livestock herd and so protect their herd from threats. Image via Shutterstock.

By Lily van Eeden (University of Sydney), Adrian Treves (University of Wisconsin-Madison), and Euan Ritchie (Deakin University).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Farmers have struggled for millennia to protect their livestock from wolves, lions, bears, and other large carnivores. It’s expensive and time-consuming for farmers, governments and related agencies. Many current approaches have led to dramatic reductions or the complete loss of some apex predators from many regions of the globe.

Despite these substantial costs and their long history, we have remarkably little understanding of what methods best reduce livestock attacks.

A recent synthesis study, led by Lily van Eeden, Ann Eklund, Jennie Miller, and Adrian Treves with a total of 21 authors from 10 countries, found that there’s a worldwide dearth of rigorous experimental studies testing the effectiveness of interventions to protect livestock from carnivores.

Where studies do exist, results were mixed. Some management interventions did reduce livestock losses, some made little to no difference, and some resulted in increased livestock losses. This means that for some methods, farmers would be better off doing nothing at all than using them.

Poor evidence, poor outcomes

The scant evidence is cause for concern. Aside from financial waste, preventable livestock attacks cause economic, emotional, and social costs for farmers. And both livestock and carnivores may be left maimed and suffering by human failures to separate the two sets of animals.

Too often, studies and management programs measure success based on money spent or saved, numbers of community members who contributed, or carnivores killed. None of these factors necessarily mean livestock loss is prevented or reduced.

In fact, livestock owners, policy makers, and scientists should work together to build an evidence base and discover what works best to reduce attacks on livestock under different conditions.

What works and why

Where we found rigorous studies quantifying livestock loss, three methods were consistently effective: livestock guardian dogs, some kinds of fencing, and a deterrent called “fladry” (a Polish word for strips of cloth or plastic flagging hung at regular intervals along a rope or fence line).

Livestock guardian dogs have been used successfully in Europe for centuries and are now seeing a revival elsewhere, including in North America and Africa.

Livestock guardian dog breeds, such as Maremma and Komondor, are typically much larger than herding dogs. They are raised with and trained to consider themselves part of a livestock herd and so protect their herd from threats.

While dogs are most common, they’re not the only guardian animals: llamas, alpacas, and donkeys are also used to protect livestock from smaller predators like coyotes and foxes, but more research is needed to determine how effective they are.

Fencing can be simple post-and-wire, an electric fence, or corrals, kraals or bomas (circular enclosures used in some parts of Africa) constructed from stones or wood.

Livestock can be kept within fenced areas all the time, or only at night when they are most vulnerable to carnivores (who often hunt at night, dawn, or dusk).

Our study didn’t find sufficient evidence to show that all kinds of fencing work, but there was enough that they should be considered generally effective and adapted to local conditions.

“Fladry” is a Polish word for strips of cloth or plastic flagging hung at regular intervals along a rope or fence line. Fladry is usually red, which is considered the most effective colour for scaring away carnivores. This method has been proven effective at deterring predators like grey wolves and coyotes from entering pastures.

Interestingly, all three of the methods we found to be generally effective do not involve killing carnivores.

This is good news for carnivore conservation, because it means that management can simultaneously protect livestock and carnivores. Large carnivores can play crucial roles in ecosystem regulation, so removing them can cause cascading consequences for landscapes and biodiversity.

Given the damage that ineffective management can cause to farming communities, animal welfare, and ecosystems, we hope our research serves as a catalyst for policy-makers and practitioners to think critically about the methods they use and why.

Too often, we continue to use a particular method due to habit and history, but that doesn’t mean it’s the best way to protect assets.

Governments that continue to fund and encourage ineffective management are not giving farming communities the best chance of success.

The Conversation

YouTube: Carnivore conservation needs evidence-based livestock protection

A new study published in the peer-reviewed journal PLOS Biology reveals certain nonlethal methods are effective for managing predators in agricultural landscapes. Twenty-one authors from 10 nations reviewed 114 peer-reviewed scientific studies measuring the effectiveness of lethal and non-lethal methods for reducing carnivore predation on livestock. Livestock guardian dogs, livestock enclosures and fladry all were scientifically shown to be effective conflict deterrents.

 

Australian Geographic: The extinction crisis: Australians call for a radical re-haul of environmental laws

Australia is failing to meet international obligations to protect our unique wildlife, experts say.

Recounting a list of Australian animals on the brink of extinction comes all too easily to Euan Ritchie, an Associate Professor in Wildlife Ecology and Conservation at Deakin University.

“Obvious examples include the orange-bellied parrot, which only has a few individuals left in the wild,” he says, referring to the multi-coloured grass parrot with a total population of less than 50 that migrates between Tasmania and mainland Australia…

Continue reading on the Australian Geographic website