Predator responses to fire: A global systematic review and meta‐analysis

Authors: William L Geary, Tim S Doherty, Dale G Nimmo, Ayesha I T Tulloch, and Euan G Ritchie

Published in: Journal of Animal Ecology

Abstract

Knowledge of how disturbances such as fire shape habitat structure and composition, and affect animal interactions, is fundamental to ecology and ecosystem management. Predators also exert strong effects on ecological communities, through top‐down regulation of prey and competitors, which can result in trophic cascades. Despite their ubiquity, ecological importance and potential to interact with fire, our general understanding of how predators respond to fire remains poor, hampering ecosystem management.

To address this important knowledge gap, we conducted a systematic review and meta‐analysis of the effects of fire on terrestrial, vertebrate predators worldwide. We found 160 studies spanning 1978–2018. There were 36 studies with sufficient information for meta‐analysis, from which we extracted 96 effect sizes (Hedge’s g) for 67 predator species relating to changes in abundance indices, occupancy or resource selection in burned and unburned areas, or before and after fire.

Studies spanned geographic locations, taxonomic families, and study designs, but most were located in North America and Oceania (59% and 24%, respectively), and largely focussed on felids (24%) and canids (25%). Half (50%) of the studies reported responses to wildfire, and nearly one third concerned prescribed (management) fires.

There were no clear, general responses of predators to fire, nor relationships with geographic area, biome or life history traits (e.g. body mass, hunting strategy and diet). Responses varied considerably between species. Analysis of species for which at least three effect sizes had been reported in the literature revealed that red foxes (Vulpes vulpes) mostly responded positively to fire (e.g. higher abundance in burned compared to unburned areas) and eastern racers (Coluber constrictor) negatively, with variances overlapping zero only slightly for both species.

Our systematic review and meta‐analysis revealed strong variation in predator responses to fire, and major geographic and taxonomic knowledge gaps. Varied responses of predator species to fire likely depend on ecosystem context. Consistent reporting of ongoing monitoring and management experiments is required to improve understanding of the mechanisms driving predator responses to fire, and any broader effects (e.g. trophic interactions). The divergent responses of species in our study suggest that adaptive, context‐specific management of predator‐fire relationships is required.

Geary WL, Doherty TS, Nimmo DG, Tulloch AIT, Ritchie EG (2019) Predator responses to fire: A global systematic review and meta‐analysis. Journal of Animal Ecology PDF DOI 

Digging up the dirt: Quantifying the effects on soil of a translocated ecosystem engineer

Authors: Lauren M Halstead, Duncan R Sutherland, Leonie E Valentine, Anthony R Rendall, Amy L Coetsee, and Euan G Ritchie

Published in: Austral Ecology

Abstract

Digging mammals are often considered ecosystem engineers, as they affect important properties of soils and in turn nutrient exchange, vegetation dynamics and habitat quality. Returning such species, and their functions, to areas from where they have been extirpated could help restore degraded landscapes and is increasingly being trialled as a conservation tool.

Studies examining the effects of digging mammals have largely been from arid and semi‐arid environments, with little known about their impacts and importance in mesic systems. To address this knowledge gap, we investigated the ecological role of a recently introduced population of eastern barred bandicoots (Perameles gunnii) on Churchill Island, Victoria, south‐eastern Australia, from which all digging mammals have been lost.

We quantified the annual rate of soil turnover by estimating the number of foraging pits bandicoots created in 100‐m² plots over a 24‐hour period. Foraging pit counts could not be completed in each season, and the overall turnover estimate assumes that autumn/winter months represent turnover rates for the entire year; however, this is likely to fluctuate between seasons. Ten fresh and ten old pits were compared to paired undug control sites to quantify the effect soil disturbance had on soil hydrophobicity, moisture content and soil strength. Plots contained between zero and 64 new foraging pits each day. We estimated that an individual eastern barred bandicoot digs ~487 (95% CI = 416–526) small foraging pits per night, displacing ~13.15 kg (95% CI = 11.2–14.2 kg) of soil, equating to ~400 kg (95% CI = 341–431 kg) of soil in a winter month. Foraging pits were associated with decreased soil compaction and increased soil moisture along the foraging pit profile.

Eastern barred bandicoots likely play an important role in ecosystems through their effects on soil, which adds to an increasing body of knowledge suggesting restoration of ecosystems, via the return of ecosystem engineers and their functions, holds much promise for conserving biodiversity and ecological function.

Halstead LM, Sutherland DR, Valentine LE, Rendall AR, Coetsee AL, Ritchie EG (2019) Digging up the dirt: Quantifying the effects on soil of a translocated ecosystem engineer. Austral Ecology PDF DOI

Constraints on vertebrate range size predict extinction risk

Authors: Thomas M Newsome, Christopher Wolf, Dale G Nimmo, R Keller Kopf, Euan G Ritchie, Felisa A Smith, and William J Ripple

Published in: Global Ecology and Biogeography

Abstract

Aim: The only factor in the fossil record that consistently buffers against extinction risk is large geographical range. We ask whether extant vertebrate species with the smallest geographical range for their body size have a higher extinction risk, and thus whether the lower bound of the modern range–body size relationship could serve as an effective conservation prioritization tool.

Location: Global in scope.

Time period: Modern.

Major taxa studied: Six classes of vertebrates.

Methods: We compiled a database of geographical range, body size and extinction risk for six vertebrate classes (n = 26,076). We characterized the shape of the relationship between geographical range and body size for each class, using 90% and 10% quantile regression to describe the upper and lower bounds, respectively. We then evaluated the degree of extinction vulnerability of species at the lower bound of the regression using generalized linear mixed models. All analyses accounted for phylogenetic dependence between related species.

Results: The relationships between species ranges and body sizes were generally positive at both the upper and the lower bounds, and segmented (nonlinear) relationships were common. Despite this variability, species near the lower boundary of the relationship were more often in higher extinction risk categories, and this remained true when the role of range size in the International Union for Conservation of Nature Red Listing criteria was accounted for.

Main conclusions: Variability in the upper and lower bounds of the range–body size relationship suggests that some classes of vertebrates exhibit combinations of ranges and body sizes that might not reflect historical patterns. Nonetheless, the range–body size relationship remains a reliable and useful predictor of extinction risk, more so than range size does alone. The range–body size relationship could therefore be used to track the trajectories of species towards or away from an extinction threshold and allow the tracking of how different human activities alter the range–body size relationship.

Newsome TM, Wolf C, Nimmo DG, Kopf RK, Ritchie EG, Smith FA, Ripple WJ (2019) Constraints on vertebrate range size predict extinction risk, Global Ecology and Biogeography PDF DOI

Topographic ruggedness and rainfall mediate geographic range contraction of a threatened marsupial predator

Authors: Harry A Moore, Judy A Dunlop, Leonie E Valentine, John C Z Woinarski, Euan G Ritchie, David M Watson, and Dale G Nimmo

Published in: Diversity and Distributions

Abstract

Aim: Species range contractions are increasingly common globally. The niche reduction hypothesis posits that geographic range contractions are often patterned across space owing to heterogeneity in threat impacts and tolerance. We applied the niche reduction hypothesis to the decline of a threatened marsupial predator across northern Australia, the northern quoll (Dasyurus hallucatus).

Location: Northern Australia.

Methods: We assembled a database containing 3,178 historic and contemporary records for northern quolls across the extent of their distribution dating between 1778 and 2019. Based on these records, we estimated changes in the geographic range of the northern quoll using α‐hulls across four main populations. We then examined how range contractions related to factors likely to mediate the exposure, susceptibility, or tolerance of northern quolls to threats.

Result: The extent of range contractions showed an east–west gradient, most likely reflecting the timing of spread of introduced cane toads (Rhinella marina). There were clear changes in environmental characteristics within the contemporary compared to the historic geographic range, with the most substantial occurring in populations that have suffered the greatest range contractions. The contemporary range is comprised of higher quality habitats (measured using environmental niche models), characterized by higher topographical ruggedness and annual rainfall, and reduced distance to water, compared to the historic range.

Main conclusions: Changes to range and niche likely reflect the capacity of complex habitats to ameliorate threats (namely predation and altered fire regimes), and access to resources that increase threat tolerance. This study highlights the multivariate nature of ecological refuges and the importance of high‐quality habitats for the persistence of species exposed to multiple threats. Our methods provide a useful framework which can be applied across taxa in providing valuable insight to management.

Moore HA, Dunlop JA, Valentine LE, Woinarski JCZ, Ritchie EG, Watson DM, Nimmo DG (2019) Topographic ruggedness and rainfall mediate geographic range contraction of a threatened marsupial predator. Diversity and Distributions PDF DOI

Life in linear habitats: the movement ecology of an endangered mammal in a peri‐urban landscape

Authors: Sarah J Maclagan, Terry Coates, Bronwyn A Hradsky, Ryan Butryn, and Euan G Ritchie

Published in: Animal Conservation

Abstract

Animal movement can be significantly altered in human‐dominated landscapes such as urban and peri‐urban areas, where habitat is often fragmented and/or linear. Knowledge regarding how wildlife respond to anthropogenic change is vital for informing conservation efforts in such landscapes, including the design of nature reserves and wildlife corridors.

To better understand how threatened species persist and behave within human‐dominated landscapes, we examined the home range and space use of the nationally endangered southern brown bandicoot Isoodon obesulus obesulus in peri‐urban Melbourne, Australia’s second‐largest city. Specifically, we examined whether:

  • bandicoots were confined to linear strips of remnant vegetation or also made use of the broader highly modified landscape matrix;
  • the configuration of the linear vegetated strips affected home range shape; and
  • home range area differed between bandicoots living in linear strips and those in larger remnant habitat patches.

We found that:

  • 71% of adult males and 33% of adult females used the matrix, but non‐dispersing juveniles were entirely confined to the linear strips; males also travelled greater distances into the matrix (away from the vegetated strips) than females;
  • bandicoots had longer home ranges in narrower strips and males had longer home ranges than females; and
  • home range area for both sexes was smaller in linear strips than has been recorded in other studies in larger remnant habitats.

Our study highlights the importance of retaining narrow, fragmented and modified vegetation to accommodate threatened biodiversity within human‐dominated landscapes, but suggests the surrounding matrix may also offer important resources for adaptable species, such as bandicoots.

Supporting off‐reserve conservation of biodiversity in novel ecosystems is increasingly pertinent in our rapidly urbanizing world.

Maclagan SJ, Coates T, Hradsky BA, Butryn R, Ritchie EG (2019) Life in linear habitats: the movement ecology of an endangered mammal in a peri‐urban landscape. Animal Conservation PDF DOI

Restricted‐area culls and red fox abundance: Are effects a matter of time and place?

Authors: Jim‐Lino Kämmerle, Euan G Ritchie, and Ilse Storch

Published in: Conservation Science and Practice

Abstract

Predators are often culled to benefit prey, but in many cases this conservation goal is not achieved or results remain unknown.

The red fox (Vulpes vulpes) is a predator of global significance, and an invasive species in some regions. Red fox culls intended to benefit prey are often restricted to small areas, and effectiveness is rarely sufficiently evaluated.

Given the economic, ecological, social, and welfare issues associated with lethal predator control, there is a strong need to assess the effects of spatiotemporal variation in culling intensity on red fox abundance.

We surveyed red fox populations in fragmented forests of south‐western Germany and related indices of local fox abundance to culling data, predicted landscape‐scale fox abundance, and other covariates. We tested whether restricted‐area culling was associated with local reductions in fox abundance, and examined how this relationship changed over time.

Local fox abundance was temporarily reduced in spring, following winter culls. However, the effect was minor and fox populations had compensated for the reductions at the latest by autumn. Restricted‐area culling therefore likely failed to sustain effects on fox abundance throughout the period most relevant for conservation (i.e., the reproductive period of the target prey species).

To be effective as a conservation tool, culling will therefore require explicit spatiotemporal coordination matching the biology of predators and target prey.

Kämmerle J, Ritchie EG, Storch I (2019) Restricted‐area culls and red fox abundance: Are effects a matter of time and place? Conservation Science and Practice PDF DOI

Science communication in a post‐truth world: promises and pitfalls

Authors: R Keller Kopf, Dale G Nimmo, Euan G Ritchie, and Jen K Martin

Published in: Frontiers in Ecology and the Environment

The mass decline of biodiversity in this post-truth era means that reliable and influential conservation science communication is more important than ever.

In this era, truths and lies are increasingly difficult to distinguish, posing a major challenge to science communication. As a result, conservation scientists and managers are grappling with new ways of countering misinformation and sharing factual information.

Facebook, Twitter, YouTube, Instagram, blogs, online news outlets, webcomics, and satirical articles all provide communication opportunities, but we still have a poor understanding of which of these are most effective, and when and where to best communicate science…

Kopf RK, Nimmo DG, Ritchie EG, Martin JK (2019) Science communication in a post-truth world: promises and pitfalls. Frontiers in Ecology and the Environment PDF DOI