Feral horse impacts on threatened plants and animals in sub-alpine and montane environments in Victoria, Australia

Authors: Rebecca C Cherubin, Susanna E Venn, Don A Driscoll, Tim S Doherty, and Euan G Ritchie

Published in: Ecological Management & Restoration

Summary

Feral herbivores are a major driver of biodiversity loss globally and can alter the structure, composition and functioning of ecosystems. The direct impacts of feral herbivores on plant communities are well studied, but the direct and indirect effect they have on wildlife is not well understood.

In Victoria (south‐eastern Australia), a large feral Horse (Equus caballus) population coincides with highly sensitive and nationally endangered Alpine Sphagnum Bogs and Associated Fens communities, and several threatened animal species.

We assessed the impact of feral horses on this ecological community and the Alpine Water Skink (Eulamprus kosciuskoi) and the Broad‐toothed Rat (Mastacomys fuscus) at 20 sites with varying levels of horse disturbance. We used scat counts to determine an index of feral horse abundance and quantified impacts associated with their presence in the landscape. Active searches were used for Alpine Water Skink and scat and runway surveys for Broad‐toothed Rat. We also measured the vegetation structure and the abundance of different vegetation types (life forms).

Our results suggest that feral horses are associated with vegetation types and characteristics that negatively influence the presence or abundance of Alpine Water Skink and Broad‐toothed Rat. Sites with high horse activity had more low‐growing forbs, and the abundance of Alpine Water Skink was negatively related to this vegetation type. Grasses, sedges, rushes and shrubs were also less dense and lower in height in high horse activity sites, and Broad‐toothed Rat was less likely to be present in areas with these habitat attributes.

We recommend that feral horses are controlled to protect these threatened vertebrate species and their Sphagnum bog habitat.

Cherubin RC, Venn SE, Driscoll DA, Doherty TS, Ritchie EG (2019) Feral horse impacts on threatened plants and animals in sub-alpine and montane environments in Victoria, Australia. Ecological Management & Restoration PDF DOI

Impacts of feral horses in the Australian Alps and evidence-based solutions

Authors: Don A Driscoll, Graeme L Worboys, Hugh Allan, Sam C Banks, Nicholas J Beeton, Rebecca C Cherubin, Tim S Doherty, C Max Finlayson, Ken Green, Renée Hartley, Geoffrey Hope, Chris N Johnson, Mark Lintermans, Brendan Mackey, David J Paull, Jamie Pittock, Luciana L Porfirio, Euan G Ritchie, Chloe F Sato, Ben C Scheele, Deirdre A Slattery, Susanna Venn, David Watson, Maggie Watson, and Richard M Williams

Published in: Ecological Management & Restoration

Summary

New evidence of impacts by feral horses in Australia’s alpine parks systems confirms they endanger threatened species and extensively damage critically endangered bog communities that could take millennia to recover. These impacts are not confounded by effects of deer and accumulate over time, even when only a small number of feral horses (∼100) are present.

With protected areas representing only a small proportion of the area of the Australian states of New South Wales (9.3%) and Victoria (17%), allowing feral horses to degrade reserves is not a reasonable management compromise, is contrary to the purpose of the protected area system and conflicts with international obligations.

Modelling and decades of management experience indicate that trapping alone does not control feral horse numbers. Trapping and fertility control can work in small populations, but not when there are several thousand horses in remote areas. Aerial culling is needed to cost‐effectively and humanely control feral horse populations.

The relatively small amount of suffering feral horses experience during a cull is outweighed by

  1. avoiding suffering and death of horses from starvation and thirst,
  2. avoiding the suffering of native animals displaced by horses, and
  3. avoiding the ethical concerns of driving threatened species towards extinction.

Objections to aerial culling on welfare and cultural grounds are contradicted by evidence.

Improving knowledge in the general community about what is at stake is long overdue because without this knowledge, small groups with vested interests and unfounded claims have been able to dominate debate and dictate management actions.

As a result of ineffective management, horse populations are now expanding and causing well‐documented damage to Australia’s alpine parks, placing at risk almost $10M spent on restoration after livestock grazing ended. The costs of horse control and restoration escalate the longer large horse populations remain in the alpine parks.

It is crucial that feral horse numbers are rapidly reduced to levels where ecosystems begin to recover. Aerial culling is needed as part of the toolbox to achieve that reduction.

Driscoll DA, Worboys GL, Allan H, Banks SC, Beeton NJ, Cherubin RC, Doherty TS, Finlayson CM, Green K, Hartley R, Hope G, Johnson CN, Lintermans M, Mackey B, Paull DJ, Pittock J, Porfirio LL, Ritchie EG, Sato CF, Scheele BC, Slattery DA, Venn S, Watson D, Watson M, Williams RM (2019) Impacts of feral horses in the Australian Alps and evidence-based solutions. Ecological Management & Restoration PDF DOI 

Animal movements in fire-prone landscapes

Authors: Dale G Nimmo, Sarah Avitabile, Sam C Banks, Rebecca Bliege Bird, Kate Callister, Michael F Clarke, Chris R Dickman, Tim S Doherty, Don A Driscoll, Aaron C Greenville, Angie Haslem, Luke T Kelly, Sally A Kenny, José J Lahoz‐Monfort, Connie Lee, Steven Leonard, Harry Moore, Thomas M Newsome, Catherine L Parr, Euan G Ritchie, Kathryn Schneider, James M Turner, Simon Watson, Martin Westbrooke, Mike Wouters, Matthew White, and Andrew F Bennett.

Published in: Biological Reviews

Abstract

Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire‐prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention.

Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations.

We review animal movements in response to the immediate and abrupt impacts of fire, and the longer‐term successional changes that fires set in train.

We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards.

We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology.

We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire‐prone ecosystems.

Nimmo DG, Avitabile S, Banks SC, Bliege Bird R, Callister K, Clarke MF, Dickman CR, Doherty TS, Driscoll DA, Greenville AC, Haslem A, Kelly LT, Kenny SA, Lahoz-Monfort JJ, Lee C, Leonard S, Moore H, Newsome TM, Parr CL, Ritchie EG, Schneider K, Turner JM, Watson S, Westbrooke M, Wouters M, White M, Bennett AF (2018) Animal movements in fire-prone landscapes. Biological Reviews PDF DOI

ABC Science: If extinct animals could be brought back from the dead, should we do it?

We’re living in the middle of an extinction crisis, on par with what wiped out the dinosaurs 65 million years ago. But an asteroid isn’t responsible this time; we are.

Imagine walking into the most beautiful museum, taking all the artworks off the shelves and burning them or throwing them in the bin. That’s what we’re doing. We’re losing species every day all over the world.

De-extinction science can never replicate the wonder of evolution, nor how long it takes for species to evolve…

Read the full article on the ABC website

The secret life of possums: data loggers reveal the movement ecology of an arboreal mammal

Authors: Blake M Allan, Dale G Nimmo, John P Y Arnould, Jennifer K Martin, and Euan G Ritchie

Published in: Journal of Mammalogy

Abstract

Understanding animal movement patterns is fundamental to ecology, as it allows inference about species’ habitat preferences and their niches. Such knowledge also underpins our ability to predict how animals may respond to environmental change, including habitat loss and modification. Data-logging devices such as GPS trackers and accelerometers are rapidly becoming cheaper and smaller, allowing movement at fine scales to be recorded on a broad range of animal species.

We examined movement patterns of an arboreal mammal (bobuck, Trichosurus cunninghami) in a highly fragmented forest ecosystem.

The GPS data showed males travelled greater distances than females in linear roadside strip habitats, but not in forest fragments. The accelerometer data showed that both sexes exhibited higher activity levels in roadside habitats compared to forest fragments. By coupling GPS and accelerometer data, we uncovered for this species an ecological pattern similar to other mammals: that male bobucks had higher activity levels than females for a given distance travelled.

Our findings also suggest that habitat fragmentation changes the amount and type of activity bobucks perform while moving, and that linear forest strips could be considered “energetically challenging” habitats, which informs how we should manage the spatial distribution of key supplementary resources for this species such as nest sites and minimum fragment sizes.

Allan BM, Nimmo DG, Arnould JPY, Martin JK, Ritchie EG (2018) The secret life of possums: data loggers reveal the movement ecology of an arboreal mammal. Journal of Mammalogy PDF DOI

Diversity in Australia’s tropical savannas: An integrative taxonomic revision of agamid lizards from the genera Amphibolurus and Lophognathus (Lacertilia: Agamidae)

Authors: Jane Melville, Euan G Ritchie, Stephanie N J Chapple, Richard E Glor And James A Schulte II

Published in: Memoirs of Museum Victoria, volume 77

Abstract

The taxonomy of many of Australia’s agamid lizard genera remains unresolved because morphological characters have proved to be unreliable across numerous lineages. We undertook a morphological study and integrated this with a recent genetic study to resolve long-standing taxonomic problems in three genera of large-bodied Australian agamid lizards: Amphibolurus, Gowidon and Lophognathus. We had broad geographic sampling across genera, including all currently recognised species and subspecies.

Using an integrative taxonomic approach, incorporating mitochondrial (ND2) and nuclear (RAG1) genetic data, and our morphological review, we found that both generic and species-level taxonomic revisions were required. We revise generic designations, creating one new genus (Tropicagama gen. nov.) and confirming the validity of Gowidon, giving a total of four genera. In addition, we describe a new species (Lophognathus horneri sp. nov.) and reclassify two other species.

Our results provide a significant step forward in the taxonomy of some of Australia’s most iconic and well-known lizards and provide a clearer understanding of biogeographic patterns across Australia’s monsoonal and arid landscapes.

Melville J, Ritchie EG, Chapple SNJ, Glor RE Schulte II JA (2018) Diversity in Australia’s tropical savannas: An integrative taxonomic revision of agamid lizards from the genera Amphibolurus and Lophognathus (Lacertilia: Agamidae). Memoirs of Museum Victoria PDF DOI