PhD opportunity: fire and wildlife ecology in semi-arid ecosystems

We are seeking a PhD student for an exciting, industry-funded project aimed at understanding how fire regimes influence wildlife in semi-arid Victoria. The project is expected to begin in mid-2019.

The project will use new automated methods alongside traditional methods to sample mammal, reptile and amphibian communities across a chronosequence of fire age-classes in each of two major vegetation types (lowan mallee and heathland sands) in the Victorian mallee (Big Desert and Little Desert national parks). The candidate will work closely with machine-learning experts to develop and implement automated data processing methods.

The project is funded and supported via the Victorian Department of Environment, Land, Water and Planning and the Bushfire and Natural Hazards Cooperative Research Centre, and will also involve close collaboration with research partners at La Trobe University.

For more information and to submit an expression of interest, please contact me.

Your expression of interest should include a CV and up to two pages that specifically address the following selection criteria:

  • Strong, strong first-class honours degree or equivalent at an Australian university or recognised overseas university.
  • Must be able to work independently as well as in a team and show a high level of initiative and collaboration.
  • Field experience (ideally in remote locations) in wildlife survey and ecology.
  • GIS, statistical (program R) and modelling experience will also be very advantageous.
  • Must have a current, manual driver’s license.

Expressions of interest close Tuesday 30 April 2019.

The Conversation: The dingo is a true-blue, native Australian species

Canis dingo: not a wolf, and not just another dog.

By Bradley Smith (CQUniversity Australia), Corey JA Bradshaw (Flinders University), Euan Ritchie (Deakin University), Justin W Adams (Monash University), Kylie M Cairns (University of New South Wales), and Mathew Crowther (University of Sydney).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Of all Australia’s wildlife, one stands out as having an identity crisis: the dingo. But our recent article in the journal Zootaxa argues that dingoes should be regarded as a bona fide species on multiple fronts.

This isn’t just an issue of semantics. How someone refers to dingoes may reflect their values and interests, as much as the science.

How scientists refer to dingoes in print reflects their background and place of employment, and the Western Australian government recently made a controversial attempt to classify the dingo as “non-native fauna”.

How we define species – called taxonomy – affects our attitudes, and long-term goals for their conservation.

What is a dog?

Over many years, dingoes have been called many scientific names: Canis lupus dingo (a subspecies of the wolf), Canis familiaris (a domestic dog), and Canis dingo (its own species within the genus Canis). But these names have been applied inconsistently in both academic literature and government policy.

This inconsistency partially reflects the global arguments regarding the naming of canids. For those who adhere to the traditional “biological” species concept (in which a “species” is a group of organisms that can interbreed), one might consider the dingo (and all other canids that can interbreed, like wolves, coyotes, and black-backed jackals) to be part of a single, highly variable and widely distributed species.

But the “biological” species concept used to name species came about long before modern genetic tools, or even before many hybrid species were identified by their DNA (such as the “red wolf,” an ancient hybrid of grey wolves and coyotes found in the southeastern United States).

Few people would really argue that a chihuahua, a wolf, and a coyote are the same species. In reality there are many more comprehensive and logical ways to classify a species. In our latest paper we argue that a holistic approach to defining species is essential in the case of the dingo and other canids.

Our work shows conclusively that dingoes are distinct from wild canids and domestic dogs based on many different criteria.

Truly wild

The first criterion is that dingoes are wild animals, and live completely independent from humans. This is fundamentally different to domestic, feral, or wild dogs, which must live near human settlements and rely on humans for food and water in some way to survive.

Yes, the dingo might have arrived in Australia with humans, and we know that Aboriginal Australians have had a close relationship with dingoes following the latter’s arrival. But neither of these observations excludes dingoes from being wild.

For example, a relationship with humans does not constitute the rigorous definitions of domestication. Consider the red fox (Vulpes vulpes), which was also introduced to Australia by people and are now free-ranging: they are also not considered to be domesticated. Neither are wild animals such as birds that we feed in our backyards domesticated simply because they are sometimes fed by us.

Ecological role

In fact, dingoes have been living wild and independently of humans for a very long time — they have a distinct and unique evolutionary past that diverged some 5 to 10 thousand years ago from other canids. This is more than enough time for the dingo to have evolved into a naturalised predator now integral to maintaining the health of many Australian ecosystems.

Dogs do not have the brain power or body adaptations to survive in the wild, and they cannot play the same ecological role as dingoes. From this ecological perspective alone, the two species are not interchangeable. Dingoes are Australia’s only large (between 15-20 kg), land-based predator, and as such play a vital role in Australia’s environment.

Shape and size

Viewed alone, the overall shape of the body and skull does not easily distinguish wild canids from dogs, mainly because of the sheer diversity among different breeds of domestic dogs.

But there are some important body differences between free-ranging dogs and dingoes, mainly in the skull region (as shown here and here).


Dingoes (and other truly wild canids) have some fundamentally unique behaviours that set them apart from dogs (although like shape, there are often exceptions among the artificial dog breeds). For example, dingoes have significantly different reproductive biology and care-giving strategies.

There are also differences in brain function, such as in the way the two species solve problems, and dingoes and dogs communicate differently with humans.


While dingoes and dogs obviously share an ancestral relationship, there is a lot of genetic data to support the distinction between dingoes and dogs.

While dingoes share ancestry with ancient Asian dogs from 10,000 years ago, the dingo has been geographically isolated from all other canids for many thousands of years, and genetic mixing has only been occurring recently, most probably driven by human intervention.

Since the 1990s, genetic markers have been in widespread use by land managers, conservation groups, and researchers to differentiate dingoes from domestic dogs.

What’s at stake?

Even acknowledging the dingo’s uncertain and distant past, lumping dingoes and dogs together is unjustified.

Labelling dingoes as “feral domestic dogs” or some other misnomer ignores their unique, long, and quintessentially wild history in Australia.

Inappropriate naming also has serious implications for their treatment. Any label less than “dingo” can be used to justify their legal persecution.

Further loss of dingoes could have serious, negative ecological consequences, including potentially placing other Australian native animals at increased risk of extinction.The Conversation7

The Conversation: To reduce fire risk and meet climate targets, over 300 scientists call for stronger land clearing laws

Without significant tree cover, dry and dusty landscapes can result. Image credit: Don Driscoll

By Martine Maron (The University of Queensland), Andrea Griffin (University of Newcastle), April Reside (The University of Queensland), Bill Laurance (James Cook University), Don Driscoll (Deakin University), Euan Ritchie (Deakin University), and Steve Turton (CQUniversity Australia).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia’s high rates of forest loss and weakening land clearing laws are increasing bushfire risk, and undermining our ability to meet national targets aimed at curbing climate change.

This dire situation is why we are among the more than 300 scientists and practitioners who have signed a declaration calling for governments to restore, or better strengthen regulations to protect native vegetation.

Land clearing laws have been contentious in several states for years. New South Wales relaxed its land clearing controls in 2017, triggering concerns over irreversible environmental damage. Although it is too early to know the impact of those changes, a recent analysis found that land clearing has increased sharply in some areas since the laws changed.

The Queensland Labor government’s 2018 strengthening of land clearing laws came after years of systematic weakening of these protections. Yet the issue has remained politically divisive. While discussing a federal inquiry into the impact of these policies on farmers, federal agriculture minister David Littleproud suggested that the strenthening of regulations may have worsened Queensland’s December bushfires.

We argue such an assertion is at odds with scientific evidence. And, while the conservation issues associated with widespread land clearing are generally well understood by the public, the consequences for farmers and fire risks are much less so.

Tree loss can increase fire risk

During December’s heatwave in northern Queensland, some regions were at “catastrophic” bushfire risk for the first time since ratings began. Even normally wet rainforests, such as at Eungella National Park inland from Mackay, sustained burns in some areas during “unprecedented” fire conditions.

There is no evidence to support the suggestion that 2018’s land clearing law changes contributed to the fires. No changes were made to how vegetation can be managed to reduce fire risk. This is governed under separate laws, which remained unaltered.

In fact, shortly after the fires, Queensland’s land clearing figures were released. They showed that in the three years to June 2018, an area equivalent to roughly 570,000 Melbourne Cricket Grounds (1,138,000 hectares) of bushland was cleared, including 284,000 hectares of remnant (old-growth) ecosystems.

Tree clearing can worsen fire risk in several ways. It can affect the regional climate. In parts of eastern Australia, tree cover reductions are estimated to have increased summer surface temperatures by up to 2℃ and southwest Western Australia by 0.4–0.8℃, reduced rainfall in southeast Australia, and made droughts hotter and longer.

Removing forest vegetation depletes soil moisture. Large, intact areas of forest typically have cooler, wetter microclimates buffered from extreme temperatures. Over time, some forest types can even become fire-resistant, but smaller patches of trees are typically drier and more flammable.

Trees also form a natural windbreak that can slow the spread of bushfires. An analysis of the 2005 Wangary fire in South Australia found that fires spread most rapidly through paddocks, rather than through areas lined with native trees.

Finally, Australia’s increasing risk of bushfire and worsening drought are driven by global climate change, to which land clearing is a major contributor.

Farmers on the frontline of environmental risk

Extensive tree clearing also leads to problems for farmers, including rising salinity, reduced water quality, and soil erosion. Governments and rural communities spend significant money and labour redressing the aftermath of excessive clearing.

Sensible regulation of native vegetation removal does not restrict existing agriculture, but rather seeks to support sustainable production. Retained trees can help deal with many environmental risks that hamper agricultural productivity, including animal health, long-term pasture productivity, risks to the water cycle, pest control, and human well-being.

Rampant tree clearing is undoing climate policy too. Much of the federal government’s A$2.55 billion Emissions Reduction Fund has gone towards tree planting. But it would take almost this entire sum just to replace the trees cleared in Queensland since 2012.

In 2019, Australians might reasonably expect that our relatively wealthy and well-educated country has moved beyond a frontier-style reliance on continued deforestation, and we would do well to better acknowledge and learn lessons from Indigenous Australians with respect to their land management practices.

Yet the periodic weakening of land clearing laws in many parts of Australia has accelerated the problem. The negative impacts on industry, society and wildlife are numerous and well established. They should not be ignored.

Persistence through tough times: fixed and shifting refuges in threatened species conservation

Authors: April E Reside, Natalie J Briscoe, Chris R Dickman, Aaron C Greenville, Bronwyn A Hradsky, Salit Kark, Michael R Kearney, Alex S Kutt, Dale G Nimmo, Chris R Pavey, John L Read, Euan G Ritchie, David Roshier, Anja Skroblin, Zoe Stone, Matt West, and Diana O Fisher

Published in: Biodiversity and Conservation


It may be possible to avert threatened species declines by protecting refuges that promote species persistence during times of stress. To do this, we need to know where refuges are located, and when and which management actions are required to preserve, enhance or replicate them.

Here we use a niche-based perspective to characterise refuges that are either fixed or shifting in location over ecological time scales (hours to centuries). We synthesise current knowledge of the role of fixed and shifting refuges, using threatened species examples where possible, and examine their relationships with stressors including drought, fire, introduced species, disease, and their interactions.

Refuges often provide greater cover, water, food availability or protection from predators than other areas within the same landscapes. In many cases, landscape features provide refuge, but refuges can also arise through dynamic and shifting species interactions (e.g., mesopredator suppression). Elucidating the mechanisms by which species benefit from refuges can help guide the creation of new or artificial refuges. Importantly, we also need to recognise when refuges alone are insufficient to halt the decline of species, and where more intensive conservation intervention may be required.

We argue that understanding the role of ecological refuges is an important part of strategies to stem further global biodiversity loss.

Reside AE, Briscoe NJ, Dickman CR, Greenville AC, Hradsky BA, Kark S, Kearney MR, Kutt AS, Nimmo DG, Pavey CR, Read JL, Ritchie EG, Roshier D, Skroblin A, Stone Z, West M, Fisher DO (2019) Persistence through tough times: fixed and shifting refuges in threatened species conservation. Biodiversity and Conservation PDF DOI

The truth about cats and dogs: assessment of apex- and mesopredator diets improves with reduced observer uncertainty

Authors: Michael L Wysong, Ayesha IT Tulloch, Leonie E Valentine, Richard J Hobbs, Keith Morris, and Euan G Ritchie

Published in: Jornal of Mammalogy


Dietary (scat) analysis is a key tool for assessing the potential effects of predators on prey and for comparing resource use between predators, information that is crucial for effective wildlife management. However, misidentification of the species from which scats originate could result in inaccurate conclusions regarding predator–prey interactions and their consequences for ecosystems, which may ultimately compromise conservation and management actions.

To address this issue, we developed a framework for decision-making in the face of uncertain scat species origin by incorporating field, laboratory, and molecular identification techniques.

We used the framework to examine the diets of two predators, a native apex predator (dingo, Canis lupus dingo) and an invasive mesopredator (feral cat, Felis catus), from 696 field-collected scats in the arid zone of Australia.

We examined how uncertainty regarding scat species origin changed perceptions of the nature of the relationship between coexisting predators and their prey.

The extent of dietary overlap between dingoes and cats varied with the method used to identify scat species origin. Dietary overlap assessed by laboratory identifications was twice as high as when uncertainty in scat species origin was resolved through our decision framework.

If uncertainty in scat species origin is not resolved in dietary studies, practitioners and decision-makers relying on this information run the risk of making misinformed conclusions regarding the ecological function of predators (including potential impacts on threatened species), which could have perverse outcomes if the wrong predators are targeted for management.

With uncertainty in scat species origin resolved through our decision framework, a low level of dietary overlap between the two predators was demonstrated, and medium-sized mammals most threatened with extinction were shown to be more at risk of impact from feral cat than from dingo depredations.

Wysong ML, Tulloch AIT, Valentine LE, Hobbs RJ, Morris K, Ritchie EG (2019) The truth about cats and dogs: assessment of apex- and mesopredator diets improves with reduced observer uncertainty. Journal of Mammalogy PDF DOI

The Wire: Experts call for dramatic decrease in land clearing

More than 300 scientists, practitioners and students have made a stark declaration to Australian lawmakers to curb the dramatic pace of land clearing across the nation.

The experts say that irreparable damage has already been done, and that the continued pace of current land clearing can make us more prone to bushfires and drought, accelerate the impact of climate change and severely impact Australian farmers.

Taxonomic status of the Australian dingo: the case for Canis dingo Meyer, 1793

Authors: Bradley P Smith, Kylie M Cairns, Justin W Adams, Thomas M Newsome, Melanie Fillios, Eloïse C Déaux, William C H Parr, Mike Letnic, Lily M Van Eeden, Robert G Appleby, Corey J A Bradshaw, Peter Savolainen, Euan G Ritchie, Dale G Nimmo, Clare Archer-Lean, Aaron C Greenville, Christopher R Dickman, Lyn Watson, Katherine E Moseby, Tim S Doherty, Arian D Wallach, Damian S Morrant, and Mathew S Crowther

Published in: Zootaxa


The taxonomic status and systematic nomenclature of the Australian dingo remain contentious, resulting in decades of inconsistent applications in the scientific literature and in policy.

Prompted by a recent publication calling for dingoes to be considered taxonomically as domestic dogs (Jackson et al. 2017, Zootaxa 4317, 201-224), we review the issues of the taxonomy applied to canids, and summarise the main differences between dingoes and other canids.

We conclude that:

  1. the Australian dingo is a geographically isolated (allopatric) species from all other Canis, and is genetically, phenotypically, ecologically, and behaviourally distinct; and
  2. the dingo appears largely devoid of many of the signs of domestication, including surviving largely as a wild animal in Australia for millennia.

The case of defining dingo taxonomy provides a quintessential example of the disagreements between species concepts (e.g., biological, phylogenetic, ecological, morphological). Applying the biological species concept sensu stricto to the dingo as suggested by Jackson et al. (2017) and consistently across the Canidae would lead to an aggregation of all Canis populations, implying for example that dogs and wolves are the same species. Such an aggregation would have substantial implications for taxonomic clarity, biological research, and wildlife conservation. Any changes to the current nomen of the dingo (currently Canis dingo Meyer, 1793), must therefore offer a strong, evidence-based argument in favour of it being recognised as a subspecies of Canis lupus Linnaeus, 1758, or as Canis familiaris Linnaeus, 1758, and a successful application to the International Commission for Zoological Nomenclature — neither of which can be adequately supported.

Although there are many species concepts, the sum of the evidence presented in this paper affirms the classification of the dingo as a distinct taxon, namely Canis dingo.

Smith BP, Cairns KM, Adams JW, Newsome TM, Fillios M, Déaux EC, Parr WCH, Letnic M, Van Eeden LM, Appleby RG, Bradshaw CJA, Savolainen P, Ritchie EG, Nimmo DG, Archer-Lean C, Greenville AC, Dickman CR, Watson L, Moseby KE, Doherty TS, Wallach AD, Morrant DS, Crowther MS (2019) Taxonomic status of the Australian dingo: the case for Canis dingo Meyer, 1793. Zootaxa PDF DOI