Category Archives: Publications

Save Australia’s ecological research

Authors: David B Lindenmayer, Emma L Burns, Christopher, Dickman, Peter T Green, Ary A, Hoffmann, David A Keith, John W, Morgan, Jeremy Russell-, Smith, Glenda M, Wardle, Graeme G R, Gillespie, Saul, Cunningham, Charles Krebs, Gene Likens, Johan Pauw, Tiffany G Troxler, William H McDowell, Jane A Catford, Richard Hobbs, Andrew Bennett, Emily Nicholson, Euan Ritchie, Barbara Wilson, Aaron C Greenville, Thomas Newsome, Rick Shine, Alex Kutt, Ayesha Tulloch, Nicole Thurgate, Alaric Fisher, Kate Auty, Becky Smith, Richard Williams, Barry Fox, Graciela Metternicht, Xuemei Bai, Samuel Banks, Rebecca Colvin, Mason Crane, Liz Dovey, Ceridwen Fraser, Claire Foster, Robert Heinsohn, Geoffrey Kay, Katherina Ng, Chris MacGregor, Damian Michael, Luke, O’Loughlin, Thea, O’Loughlin, Luciana Porfirio, Libby Robin, David Salt, Chloe Sato, Ben Scheele, Janet Stein, John Stein, Brian Walker, Martin Westgate, George Wilson, Jeffrey Wood, Susanna Venn, Michael Vardon, Sarah Legge, Robert Costanza, Danny Kenny, Peter Burnett, Alan Welsh, Joslin Moore, Carla Sgrò, and Mark Westoby

Published in: Science, volume 357, issue 6351 (August 2017)

Australia will lose its integrated long-term ecological research (LTER) network at the end of 2017 (1). The network comprises more than 1100 long-term field plots within temperate forests, rainforests, alpine grass- lands, heathlands, deserts, and savannas, with an unparalleled temporal depth in biodiversity data. Its many achievements include Australia’s first published trend data for key ecosystems (2) and a suite of IUCN ecosystem risk assessments (3).

Long-term ecological data are critical for quantifying environmental and biodiversity change and identifying its causes. LTER is especially important in Australia because many of the country’s ecosystems are subject to frequent climatic extremes. Continuity of long-term research and monitoring, and broader use of existing time series data by science and policy communities, are crucial for measuring impacts of current unprecedented global environmental change and reliably predict- ing future impacts.

Long-term research and monitoring is also essential to understanding relation- ships between the economy, ecosystems, and risks to human well-being (4). The loss of Australia’s LTER network will substantially diminish resource managers’ ability to judge the effectiveness of management interventions on which billions of dollars are spent annually (such as vegetation restoration and invasive species control). Ending the network will also jeopardize sustainability assessments of resource-based industries such as agriculture and forestry. Moreover, Australia’s capacity to participate effectively in global initiatives such as the International LTER will be impaired. The LTER network is part of the Terrestrial Ecosystem Research Network (TERN), funded by Australia’s government (5). TERN’s inclusion of existing LTER capability provided a template that others in Europe, China, and South Africa have followed. Discontinuing the LTER net- work within TERN will therefore undermine global cohesion in environmental research and monitoring.

At a time when the United States is increasing funding for its LTERs by US$5.6M annually (6), and other nations are rapidly building substantial LTER capacity, terminating Australia’s LTER network is totally out of step with interna- tional trends and national imperatives. To prevent the collapse of the LTER network and prevent the resulting irreversible impacts of breaking current time-series, urgent and direct investment by the Australian government is crucial.

  1. TERN, Quarterly Newsletter, Issue 16 (2017);
  2. D. B. Lindenmayer, E. Burns, N. Thurgate, A. Lowe, Eds., Biodiversity and Environmental Change: Monitoring, Challenges and Direction (CSIRO Publishing, Melbourne, Australia, 2014).
  3. D. A. Keith, Austral. Ecol. 40, 337 (2015).
  4. D. B. Lindenmayer et al., Austral. Ecol. 40, 213 (2015).
  5. Long Term Ecological Research Network (
  6. Nature 543, 469 (2017).

Lindenmayer D, et al. (2017) Save Australia’s ecological research. Science PDF DOI

The Conversation: Scientific integrity must be defended, our planet depends on it

By Euan Ritchie (Deakin University), James Watson (The University of Queensland), Jeremy Kerr, and Martine Maron (The University of Queensland).

This article was originally published on The Conversation. Read the original article, including reader comments.

To conserve Earth’s remarkable species, such as the violet sabrewing, we must also defend the importance of science. Image credit: Jeremy Kerr via The Conversation.

Science is the best method we have for determining what is likely to be true. The knowledge gained from this process benefits society in a multitude of ways, including promoting evidence-based decision-making and management. Nowhere is this more important than conservation, as the intensifying impacts of the Anthropocene increasingly threaten the survival of species.

But truth can be inconvenient: conservation goals sometimes seem at odds with social or economic interests. As a result, scientific evidence may be ignored or suppressed for political reasons. This has led to growing global trends of attacking scientific integrity.

Recent assaults on science and scientists under Donald Trump’s US administration are particularly extreme, but extend far more broadly. Rather than causing scientists to shrink from public discussions, these abuses have spurred them and their professional societies to defend scientific integrity.

Among these efforts was the recent March for Science. The largest pro-science demonstration in history, this event took place in more than 600 locations around the world.

We propose, in a new paper in Conservation Biology, that scientists share their experiences of defending scientific integrity across borders to achieve more lasting success. We summarise eight reforms to protect scientific integrity, drawn from lessons learned in Australia, Canada and the US.

What is scientific integrity?

Scientific integrity is the ability to perform, use and disseminate scientific findings without censorship or political interference. It requires that government scientists can communicate their research to the public and media. Such outbound scientific communication is threatened by policies limiting scientists’ ability to publish, publicise or even mention their research findings.

Public access to websites or other sources of government scientific data have also been curtailed. Limiting access to taxpayer-funded information in this way undermines citizens’ ability to participate in decisions that affect them, or even to know why decisions are being made.

A recent case of scientific information being suppressed concerns the rediscovery, early in 2017, of the plant Hibbertia fumana in New South Wales. Last seen in 1823, 370 plants were found.

Rather than publicly celebrate the news, the NSW Office of Environment and Heritage was reportedly asked to suppress the news until after a rail freight plan that overlapped with the plants’ location had been approved.

Protecting scientists’ right to speak out

Scientists employed by government agencies often cannot discuss research that might relate to their employer’s policies. While it may not be appropriate for scientists to weigh in on policy recommendations – and, of course, constant media commentaries would be chaos – the balance has tipped too far towards restriction. Many scientists cannot publicly refer to their research, or that of others, let alone explain the significance of the findings.

To counter this, we need policies that support scientific integrity, an environment of transparency and the public’s right to access scientific information. Scientists’ right to speak freely should be included in collective bargaining agreements.

Scientific integrity requires transparency and accountability. Information from non-government scientists, through submitted comments or reviews of draft policies, can inform the policy process.

Although science is only one source of influence on policy, democratic processes are undermined when policymakers limit scrutiny of decision-making processes and the role that evidence plays in them.

Let science inform policy

Independent reviews of new policy are a vital part of making evidence-based decisions. There is room to broaden these reviews, inviting external organisations to give expert advice on proposed or existing policies. This also means transparently acknowledging any perceived or actual vested interests.

Australian governments often invite scientists and others to contribute their thoughts on proposed policy. The Finkel Review, for example, received 390 written submissions. Of course, agencies might not have time to respond individually to each submission. But if a policy is eventually made that seems to contradict the best available science, that agency should be required to account for that decision.

Finally, agencies should be proactively engaging with scientific groups at all stages of the process.

Active advocacy

Strengthening scientific integrity policies when many administrations are publicly hostile to science is challenging. Scientists are stuck reactively defending protective policies. Instead, they should be actively advocating for their expansion.

The goal is to institutionalise a culture of scientific integrity in the development and implementation of conservation policies.

A transnational movement to defend science will improve the odds that good practices will be retained and strengthened under more science-friendly administrations.

Many regard science as apolitical. Even the suggestion of publicly advocating for integrity or evidence-based policy and management makes some scientists deeply uncomfortable. It is telling that providing factual information for policy decisions and public information can be labelled as partisan. Nevertheless, recent research suggests that public participation by scientists, if properly framed, does not harm their credibility.

Scientists can operate objectively in conducting research, interpreting discoveries and publicly explaining the significance of the results. Recommendations for how to walk such a tricky, but vital, line are readily available.

Scientists and scientific societies must not shrink from their role, which is more important than ever. They have a responsibility to engage broadly with the public to affirm that science is indispensable for evidence-based policies and regulations. These critical roles for scientists help ensure that policy processes unfold in plain sight, and consequently help sustain functioning, democratic societies.

The authors would like to acknowledge the contribution of Dr Carlos Carroll, a conservation biologist at the Klamath Center for Conservation Research.

The Conversation

Defending the scientific integrity of conservation-policy processes

Authors: Carlos Carroll, Brett Hartl, Gretchen T Goldman, Daniel J Rohlf, Adrian Treves, Jeremy T Kerr, Euan G Ritchie, Richard T Kingsford, Katherine E Gibbs, Martine Maron, and James E M Watson

Published in: Conservation Biology (early view)


Government agencies faced with politically controversial decisions often discount or ignore scientific information, whether from agency staff or nongovernmental scientists. Recent developments in scientific integrity (the ability to perform, use, communicate, and publish science free from censorship or political interference) in Canada, Australia, and the United States demonstrate a similar trajectory.

A perceived increase in scientific integrity abuses provokes concerted pressure by the scientific community, leading to efforts to improve scientific-integrity protections under a new administration. However, protections are often inconsistently applied and are at risk of reversal under administrations publicly hostile to evidence-based policy.

We compared recent challenges to scientific integrity to determine what aspects of scientific input into conservation policy are most at risk of political distortion and what can be done to strengthen safeguards against such abuses.

To ensure the integrity of outbound communications from government scientists to the public, we suggest governments strengthen scientific integrity policies, include scientists’ right to speak freely in collective-bargaining agreements, guarantee public access to scientific information, and strengthen agency culture supporting scientific integrity. To ensure the transparency and integrity with which information from nongovernmental scientists (e.g., submitted comments or formal policy reviews) informs the policy process, we suggest governments broaden the scope of independent reviews, ensure greater diversity of expert input and transparency regarding conflicts of interest, require a substantive response to input from agencies, and engage proactively with scientific societies.

For their part, scientists and scientific societies have a responsibility to engage with the public to affirm that science is a crucial resource for developing evidence-based policy and regulations in the public interest.

Carroll C, Hartl B, Goldman GT, Rohlf DJ, Treves A, Kerr JT, Ritchie EG, Kingsford RT, Gibbs KE, Maron M, Watson JEM (2017) Defending the scientific integrity of conservation-policy processes. Conservation Biology, PDF DOI 

Shifting public values and what they mean for increasing democracy in wildlife management decisions

Authors: Lily M van Eden, Chris R Dickman, Euan G Ritchie, and Thomas M Newsome

Published in: Biodiversity and Conservation


Over the last century, changing public attitudes about the value of wildlife have triggered substantial changes in species management that have both benefited and hindered conservation efforts. Understanding and integrating contemporary public values is therefore critical for effective conservation outcomes.

Using historic and contemporary examples, we highlight how public attitudes—expressed through the media and campaigns—are shaping the management of introduced and native species, as values shift towards animal welfare and mutualism. We focus on the issue of deliberate human-caused killing of wildlife, because protests against such management have disrupted traditional political and management structures that favoured eradication of wildlife across many jurisdictions and ecological contexts. In doing so, we show that it is essential to work with multiple stakeholder interest groups to ensure that wildlife management is informed by science, while also supported by public values. Achieving this hinges on appropriate science communication to build a better-informed public because management decisions are becoming increasingly democratised.

van Eeden LM, Dickman CR, Ritchie EG, Newsome TM (2017) Shifting public values and what they mean for increasing democracy in wildlife management decisions. Biodiversity and Conservation, PDF DOI 

The Conversation: Thinking big gives top predators the competitive edge

By Thomas Newsome (Deakin University)

Dingoes could be the key to controlling red foxes and other invasive predators, but only if we encourage them in large enough numbers over a wide enough area, our research shows.

Dingoes can help manage devastating red fox and feral cat numbers, but only if we let enough of them live in key areas. Image credit Bobby Tamayo via The Conversation

Interest in re-introducing or restoring top predators, like dingoes and wolves, has been fuelled by recent studies demonstrating their important roles in their ecosystems. They can especially be vital in suppressing the abundance of lower-order competitors or “mesopredators”, like red foxes and possibly feral cats (which can have devastating effects on native species).

But researchers have found top predators aren’t always successful in reducing mesopredator numbers. Until now, such variation has been linked to human presence, land-use changes and environmental factors such as landscape productivity.

However, our research, published yesterday in Nature Communications, found that a key factor for success is high numbers of dingoes and wolves across their natural range.

The density effect

If you look at how species are typically distributed across a landscape – their range – ecological theory predicts there’ll be lower numbers at the outer edges of their range.

If you do need large numbers of top predators to effectively suppress mesopredators, the core of their range is potentially the best place to look.

We tested this idea, looking at the dingo in Australia and the grey wolf in North America and Europe. The mesopredators included the red fox in Australia, the coyote in North America and the golden jackal in Europe.

We used information from bounty hunting programs, as these provide data on predator numbers across a wide geographical area. In the case of Australia we used historic data from the 1950s, as this is the most recent reliable information about red fox and dingo distribution. The actual population numbers of red foxes and dingoes have changed substantially since then, but the nature of their interactions – which is what we were investigating – has not.

We determined that top predators exist in higher numbers at the core of their ranges in comparison to the edges. We then looked at mesopredator numbers across the range edges of their respective top predator.

The results, which were consistent across the three continents, suggest that top predators can suppress mesopredators effectively (even completely) but only in the core of their geographic range, where their numbers are highest.

In other words, abundant top predators can exert disproportionate mesopredator control once their numbers increase past a certain point.

The ‘enemy constraint hypothesis’

The relationship we uncovered is now formalised as the “Enemy Constraint Hypothesis”. It could apply to other predator dyads, where two animals compete for similar resources – even relationships involving parasites and pathogens.

Our findings are important for understanding species interactions and niches, as well as the ecological role of top predators. It could explain why other studies have found top predators have little influence on mesopredators: they were looking at the edge, not the core, of the top predators’ range.

How many top predators do we need?

Dingoes can be vital for reducing red fox and possibly feral cat numbers. In our case studies the ranges of each top predator were limited primarily by human use of the land and intensive shooting, trapping and poisoning.

Killing pack animals like dingoes can fracture social groups, potentially altering their natural behaviour and interactions with other species. Future studies on predator interactions therefore need to consider the extent to which the animals are acting in response to human intervention.

If we want to benefit from the presence of top predators, we need to rethink our approach to management – especially where they are subjected to broad-scale control, as the dingo is in some parts of Australia.

Changing our relationship with top predators would not come without its challenges, but high extinction rates around the world (and especially in Australia) clearly indicate that we urgently need to change something. If this includes restoring top predators, then we need to think big.

This article was originally published on The Conversation. Read the original article, including reader comments.

The Conversation

The Conversation

Top predators constrain mesopredator distributions

Authors: Thomas M Newsome, Aaron C Greenville, Duško Ćirović, Christopher R Dickman, Chris N Johnson, Miha Krofel, Mike Letnic, William J Ripple, Euan G Ritchie, Stoyan Stoyanov and Aaron J Wirsing

Published in: Nature Communications, volume 8


Top predators can suppress mesopredators by killing them, competing for resources and instilling fear, but it is unclear how suppression of mesopredators varies with the distribution and abundance of top predators at large spatial scales and among different ecological contexts.

We suggest that suppression of mesopredators will be strongest where top predators occur at high densities over large areas. These conditions are more likely to occur in the core than on the margins of top predator ranges.

We propose the Enemy Constraint Hypothesis, which predicts weakened top-down effects on mesopredators towards the edge of top predators’ ranges.

Using bounty data from North America, Europe and Australia we show that the effects of top predators on mesopredators increase from the margin towards the core of their ranges, as predicted.

Continuing global contraction of top predator ranges could promote further release of mesopredator populations, altering ecosystem structure and contributing to biodiversity loss.

Newsome TM, Greenville AC, Ćirović D, Dickman CR, Johnson CN, Krofel M, Letnic M, Ripple WJ, Ritchie EG, Stoyanov S, Wirsing AJ (2017) Top predators constrain mesopredator distributions. Nature Communications, PDF DOI

The global impacts of domestic dogs on threatened vertebrates

Authors: Tim S Doherty, Chris R Dickman, Alistair S Glen, Thomas M Newsome, Dale G Nimmo, Euan G Ritchie, Abi T Vanak, Aaron J Wirsinge

Published in: Biological Conservation, volume 210 (June 2017)


Domestic dogs (Canis familiaris) have a near-global distribution. They range from being feral and free-ranging to owned and completely dependent on humans. All types of domestic dogs can interact with wildlife and have severe negative impacts on biodiversity.

Here, we use IUCN Red List data to quantify the number of threatened species negatively impacted by dogs, assess the prevalence of different types of dog impact, and identify regional hotspots containing high numbers of impacted species. Using this information, we highlight key research and management gaps and priorities.

Domestic dogs have contributed to 11 vertebrate extinctions and are a known or potential threat to at least 188 threatened species worldwide. These estimates are greater than those reported by previous assessments, but are probably conservative due to biases in the species, regions and types of impacts studied and/or reported.

Percentage of extinct or threatened vertebrate species that are, or were, affected by different types of dog impact.

Predation is the most frequently reported impact, followed by disturbance, disease transmission, competition, and hybridisation. Regions with the most species impacted are: South-east Asia, Central America and the Caribbean, South America, Asia (excluding SE), Micro/Mela/Polynesia, and Australia.

We propose that the impacts of domestic dogs can be better understood and managed through: taxonomic and spatial prioritisation of research and management; examining potential synergisms between dogs and other threatening processes; strategic engagement with animal welfare and human health campaigns; community engagement and education; and mitigating anthropogenic effects such as resource subsidies. Such actions are essential for threatened species persistence, especially given that human and dog populations are expected to increase both numerically and geographically in the coming decades.

Doherty TS, Dickman CR, Glen AS, Newsome TM, Nimmo DG, Ritchie EG, Vanak AT, Wirsing AJ (2017) The global impacts of domestic dogs on threatened vertebrates. Biological Conservation, PDF DOI