Category Archives: Publications

Crowdfunded campaigns are conserving the Earth’s environment

Crowdfunded campaigns to save the orange-bellied parrot are a rare ray of hope. Image credit: Fatih Sam

By Eduardo Gallo-Cajiao (University of Queensland), Carla Archibald (University of Queensland), Euan Ritchie (Deakin University), Rachel Friedman (University of Queensland), Richard Fuller (The University of Queensland), Rochelle Steven (University of Queensland), and Tiffany Morrison (James Cook University)

This article was originally published on The Conversation. Read the original article, including reader comments.

If not for the public’s generosity, the iconic Statue of Liberty might not have the solid and impressive footing she does today. In the late 1800s, government funds for the monument were exhausted. Yet through a fundraising campaign, the New York World newspaper garnered support from over 160,000 residents to cover the pedestal costs.

Just as large monuments need solid bases to ensure their long-term existence, so too does the environment. In the case of nature conservation, it requires money to support diverse research projects, on-ground activities, and outreach aimed at protecting and managing species and habitats.

While the health of the environment continues to decline globally, in most regions government funding falls short of what is required to stem the losses. Crowdfunding plays an important and under-appreciated role for biodiversity conservation.

Our new research presents a global analysis of how crowdfunding, still a relatively novel and minor financial mechanism in the conservation community, is contributing to conservation around the world.

Show me the money. What’s being funded and why?

Crowdfunding offers a powerful mechanism for mobilising resources for conservation across borders. We recorded 577 conservation-oriented projects (from 72 crowdfunding platforms), which have raised around US$4.8 million since 2009. The people leading these projects were based in 38 countries, but projects took place across 80 countries.

This pattern has important implications for conservation, because there is often a mismatch between high-priority areas for global conservation and countries with the greatest financial and technical capacity. For instance, we discovered that a third of the projects were delivered in different countries to where their proponents were based. The USA, UK and Australia were the countries with the highest outflow of projects (“project exporters”). Indonesia, South Africa, Costa Rica and Mexico had the highest inflow (“project importers”).

Crowdfunding could be supporting conservation work of actors that do not have as much capacity for raising funds.

The people leading projects were primarily from non-governmental organisations (35%) or universities (30%), or were freelancers (26%). Importantly, among non-governmental organisations, we discovered organisations operating at sub-national levels proposed a majority of projects.

Additionally, crowdfunding for conservation is not all about research. While most of the projects we reviewed focused on research (40%), many tackled raising awareness of conservation-related issues (31%) or boots-on-the-ground activities (21%). This expands the sphere of anecdotal evidence and commentary about crowdfunding related to conservation, which has so far revolved around research. For the first time, we’ve systematically unpacked how these funds are being used for additional activities to support conservation.

Crowdfunding can also support innovative projects that traditional funding agencies deem too risky or unconventional. For example, one project supported buying and training two Maremma sheepdogs to protect penguins against predatory foxes in southeastern Australia. (That might sound familiar to those who’ve seen the movie Oddball.)

Such opportunities for innovation can have important consequences for conservation worldwide; crowdfunding could be considered an incubator for novel ideas before widespread dissemination.

More than half of the projects we recorded (around 58%) largely focused on species. These included a disproportionate number of threatened bird and mammal species.

Prominent projects to save orange-bellied parrots or Papua New Guinea’s endangered tree kangaroos are important success stories.

This is not to underplay crowdfunding’s importance for ecosystems – whether land-based (20%), marine (9%) or freshwater (4%). Crowfunding is supporting projects ranging from protection of wilderness areas in remote Tasmania to research informing the conservation of the Californian coast.

Crowdfunding benefits extend beyond dollars and cents

The amount of money for conservation via crowdfunding has so far been relatively modest compared to more traditional conservation finance mechanisms. However, the benefits of crowdfunding extend well beyond dollars and cents. Crowdfunding helps communicate environmental issues and empower researchers and communities.

The figure below shows the reach of a single tweet during the Big Roo Count campaign. It shows how conservation-related messages can spread widely and engage communities via social media.

Crowdfunding is an exciting new tool in the conservation toolbox. But, ultimately, traditional funding sources, like government agencies, still have a major role and duty to invest adequately in environmental protection and nature conservation. Considering the current extinction crisis, governments must avoid further outsourcing of such responsibilities.

The discussion over novel sources and recipients of conservation funding continues. At the same time, transparency and oversight remain critical for managing expectations and overall effectiveness of funding. Crowdfunding contributes one more building block to democratising conservation funding and increasing transparency.

The authors would like to acknowledge the contribution of Edward Game.
The Conversation

Animal recognition and identification with deep convolutional neural networks for automated wildlife monitoring

Authors: Hung Nguyen, Sarah J Maclagan, Tu Dinh Nguyen, Thin Nguyen, Paul Flemons, Kylie Andrews, Euan G Ritchie, and Dinh Phung

Published in: 2017 IEEE International Conference on Data Science and Advanced Analytics

Abstract

Efficient and reliable monitoring of wild animals in their natural habitats is essential to inform conservation and management decisions. Automatic covert cameras or “camera traps” are being an increasingly popular tool for wildlife monitoring due to their effectiveness and reliability in collecting data of wildlife unobtrusively, continuously and in large volume. However, processing such a large volume of images and videos captured from camera traps manually is extremely expensive, time-consuming and also monotonous. This presents a major obstacle to scientists and ecologists to monitor wildlife in an open environment.

Leveraging on recent advances in deep learning techniques in computer vision, we propose in this paper a framework to build automated animal recognition in the wild, aiming at an automated wildlife monitoring system. In particular, we use a single-labeled dataset from Wildlife Spotter project, done by citizen scientists, and the state-of-the-art deep convo- lutional neural network architectures, to train a computational system capable of filtering animal images and identifying species automatically.

Our experimental results achieved an accuracy at 96.6% for the task of detecting images containing animal, and 90.4% for identifying the three most common species among the set of images of wild animals taken in South-central Victoria, Australia, demonstrating the feasibility of building fully automated wildlife observation. This, in turn, can therefore speed up research findings, construct more efficient citizen science- based monitoring systems and subsequent management decisions, having the potential to make significant impacts to the world of ecology and trap camera images analysis.

Nguyen H, Maclagan SJ, Nguyen TD, Nguyen T, Flemons P, Andrews K, Ritchie EG, Phung D (2017) Animal recognition and identification with deep convolutional neural networks for automated wildlife monitoring, 2017 IEEE International Conference on Data Science and Advanced Analytics PDF DOI 

Futurecasting ecological research: the rise of technoecology

Authors: Blake M Allan, Dale G Nimmo, Daniel Ierodiaconou, Jeremy VanDerWal, Lian Pin Koh, and Euan G Ritchie

Published in: Ecosphere, volume 9, issue 5 (May 2018)

Abstract

Increasingly complex research questions and global challenges (e.g., climate change and biodiversity loss) are driving rapid development, refinement, and uses of technology in ecology. This trend is spawning a distinct sub‐discipline, here termed “technoecology.”

We highlight recent ground‐breaking and transformative technological advances for studying species and environments: bio‐batteries, low‐power and long‐range telemetry, the Internet of things, swarm theory, 3D printing, mapping molecular movement, and low‐power computers. These technologies have the potential to revolutionize ecology by providing “next‐generation” ecological data, particularly when integrated with each other, and in doing so could be applied to address a diverse range of requirements (e.g., pest and wildlife management, informing environmental policy and decision making).

Critical to technoecology’s rate of advancement and uptake by ecologists and environmental managers will be fostering increased interdisciplinary collaboration. Ideally, such partnerships will span the conception, implementation, and enhancement phases of ideas, bridging the university, public, and private sectors.

Allan BM, Nimmo DG, Ierodiaconou D, VanDerWal J, Koh LP, Ritchie EG (2018) Futurecasting ecological research: the rise of technoecology, Ecosphere PDF DOI

Don’t judge habitat on its novelty: Assessing the value of novel habitats for an endangered mammal in a peri-urban landscape

Authors: Sarah J Maclagan, Terry Coates, and Euan G Ritchie

Published in: Biological Conservation, volume 223 (July 2018)

Abstract

Novel ecosystems are increasingly common worldwide, particularly in areas heavily impacted by humans such as urban and peri-urban landscapes. Consequently, interest in their potential contribution to biodiversity conservation is growing, including their ability to sustain populations of threatened species. However, few studies have explored whether novel habitats can support viable populations over time and how they compare to less modified, remnant habitats.

We investigated the capacity for novel habitats to support an endangered mammal, the southern brown bandicoot (Isoodon obesulus obesulus: Peramelidae), in a highly-modified landscape near Australia’s second largest city, Melbourne. We compared bandicoot abundance and body condition between five novel and two remnant sites, and examined whether novel sites support residency and key demographic processes necessary for bandicoot population persistence. We found that bandicoot abundance was higher at novel than remnant sites, with the highest abundance at the novel site with the most urbanised surroundings. Female body condition was similar between novel and remnant sites. The majority of bandicoots at novel sites were resident, and breeding activity, recruitment of first-year adults, and survival of mature adults were observed at all novel sites.

Our results demonstrate the potential significance of novel habitats for conserving threatened species within heavily-modified landscapes, and encourage us not to judge the quality of habitats on their novelty alone. Broadening our appreciation of the potential value of novel ecosystems could increase off-reserve species conservation opportunities, a key priority within the context of the Anthropocene and unprecedented global change and biodiversity loss.

Maclagan SJ, Coates T, Ritchie EG (2018) Don’t judge habitat on its novelty: Assessing the value of novel habitats for an endangered mammal in a peri-urban landscape, Biological Conservation PDF DOI 

Testing the assumptions of the pyrodiversity begets biodiversity hypothesis for termites in semi-arid Australia

Authors: Hayley Davis, Euan G Ritchie, Sarah Avitabile, Tim Doherty, and Dale G Nimmo

Published in: The Royal Society Open Science (April 2018)

Abstract

Fire shapes the composition and functioning of ecosystems globally. In many regions, fire is actively managed to create diverse patch mosaics of fire-ages under the assumption that a diversity of post-fire-age classes will provide a greater variety of habitats, thereby enabling species with differing habitat requirements to coexist, and enhancing species diversity (the pyrodiversity begets biodiversity hypothesis). However, studies provide mixed support for this hypothesis.

Here, using termite communities in a semi-arid region of southeast Australia, we test four key assumptions of the pyrodiversity begets biodiversity hypothesis:

  1. that fire shapes vegetation structure over sufficient time frames to influence species’ occurrence,
  2. that animal species are linked to resources that are themselves shaped by fire and that peak at different times since fire,
  3. that species’ probability of occurrence or abundance peaks at varying times since fire, and
  4. that providing a diversity of fire-ages increases species diversity at the landscape scale.

Termite species and habitat elements were sampled in 100 sites across a range of fire-ages, nested within 20 landscapes chosen to represent a gradient of low to high pyrodiversity. We used regression modelling to explore relationships between termites, habitat and fire.

Fire affected two habitat elements (coarse woody debris and the cover of woody vegetation) that were associated with the probability of occurrence of three termite species and overall species richness, thus supporting the first two assumptions of the pyrodiversity hypothesis. However, this did not result in those species or species richness being affected by fire history per se. Consequently, landscapes with a low diversity of fire histories had similar numbers of termite species as landscapes with high pyrodiversity.

Our work suggests that encouraging a diversity of fire-ages for enhancing termite species richness in this study region is not necessary.

Davis H, Ritchie EG, Avitabile S, Doherty T, Nimmo DG (2018) Testing the assumptions of the pyrodiversity begets biodiversity hypothesis for termites in semi-arid Australia, Royal Society Open Science PDF DOI 

Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions

Authors: Hayley M Geyle, John CZ Woinarski, G Barry Baker, Chris R Dickman, Guy Dutson, Diana O Fisher, Hugh Ford, Mark Holdsworth, Menna E Jones, Alex Kutt, Sarah Legge, Ian Leiper, Richard Loyn, Brett P Murphy, Peter Menkhorst, April E Reside, Euan G Ritchie, Finley E Roberts, Reid Tingley and Stephen T Garnett

Published in: Pacific Conservation Biology

Abstract

A critical step towards reducing the incidence of extinction is to identify and rank the species at highest risk, while implementing protective measures to reduce the risk of extinction to such species. Existing global processes provide a graded categorisation of extinction risk.

Here we seek to extend and complement those processes to focus more narrowly on the likelihood of extinction of the most imperilled Australian birds and mammals. We considered an extension of existing IUCN and NatureServe criteria, and used expert elicitation to rank the extinction risk to the most imperilled species, assuming current management.

On the basis of these assessments, and using two additional approaches, we estimated the number of extinctions likely to occur in the next 20 years. The estimates of extinction risk derived from our tighter IUCN categorisations, NatureServe assessments and expert elicitation were poorly correlated, with little agreement among methods for which species were most in danger – highlighting the importance of integrating multiple approaches when considering extinction risk.

Mapped distributions of the 20 most imperilled birds reveal that most are endemic to islands or occur in southern Australia. The 20 most imperilled mammals occur mostly in northern and central Australia.

While there were some differences in the forecasted number of extinctions in the next 20 years among methods, all three approaches predict further species loss.

Overall, we estimate that another seven Australian mammals and 10 Australian birds will be extinct by 2038 unless management improves.

Geyle HM, Woinarski JCZ, Baker GB, Dickman CR, Dutson G, Fisher DO, Ford H, Holdsworth M, Jones ME, Kutt A, Legge S, Leiper I, Loyn R, Murphy BP, Menkhorst P, Reside AE, Ritchie EG, Roberts FE, Tingley R, Garrett ST (2018) Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions, Pacific Conservation Biology PDF DOI 

A biodiversity-crisis hierarchy to evaluate and refine conservation indicators

Authors: Don A Driscoll, Lucie M Bland, Brett A Bryan, Thomas M Newsome, Emily Nicholson, Euan G Ritchie, and Tim S Doherty

Published in: Nature Ecology & Evolution

Abstract

The Convention on Biological Diversity and its Strategic Plan for Biodiversity 2011–2020 form the central pillar of the world’s conservation commitment, with 196 signatory nations; yet its capacity to reign in catastrophic biodiversity loss has proved inadequate. Indicators suggest that few of the Convention on Biological Diversity’s Aichi targets that aim to reduce biodiversity loss will be met by 2020. While the indicators have been criticized for only partially representing the targets, a bigger problem is that the indicators do not adequately draw attention to and measure all of the drivers of the biodiversity crisis.

Here, we show that many key drivers of biodiversity loss are either poorly evaluated or entirely lacking indicators. We use a biodiversity-crisis hierarchy as a conceptual model linking drivers of change to biodiversity loss to evaluate the scope of current indicators. We find major gaps related to monitoring governments, human population size, corruption and threat-industries.

We recommend the hierarchy is used to develop an expanded set of indicators that comprehensively monitor the human behaviour and institutions that drive biodiversity loss and that, so far, have impeded progress towards achieving global biodiversity targets.

Driscoll DA, Bland LM, Bryan BA, Newsome TM, Nicholson E, Ritchie EG, Doherty TS (2018) A biodiversity-crisis hierarchy to evaluate and refine conservation indicators, Nature Ecology & Evolution PDF DOI