Category Archives: Publications

Impacts of feral horses in the Australian Alps and evidence-based solutions

Authors: Don A Driscoll, Graeme L Worboys, Hugh Allan, Sam C Banks, Nicholas J Beeton, Rebecca C Cherubin, Tim S Doherty, C Max Finlayson, Ken Green, Renée Hartley, Geoffrey Hope, Chris N Johnson, Mark Lintermans, Brendan Mackey, David J Paull, Jamie Pittock, Luciana L Porfirio, Euan G Ritchie, Chloe F Sato, Ben C Scheele, Deirdre A Slattery, Susanna Venn, David Watson, Maggie Watson, and Richard M Williams

Published in: Ecological Management & Restoration

Summary

New evidence of impacts by feral horses in Australia’s alpine parks systems confirms they endanger threatened species and extensively damage critically endangered bog communities that could take millennia to recover. These impacts are not confounded by effects of deer and accumulate over time, even when only a small number of feral horses (∼100) are present.

With protected areas representing only a small proportion of the area of the Australian states of New South Wales (9.3%) and Victoria (17%), allowing feral horses to degrade reserves is not a reasonable management compromise, is contrary to the purpose of the protected area system and conflicts with international obligations.

Modelling and decades of management experience indicate that trapping alone does not control feral horse numbers. Trapping and fertility control can work in small populations, but not when there are several thousand horses in remote areas. Aerial culling is needed to cost‐effectively and humanely control feral horse populations.

The relatively small amount of suffering feral horses experience during a cull is outweighed by

  1. avoiding suffering and death of horses from starvation and thirst,
  2. avoiding the suffering of native animals displaced by horses, and
  3. avoiding the ethical concerns of driving threatened species towards extinction.

Objections to aerial culling on welfare and cultural grounds are contradicted by evidence.

Improving knowledge in the general community about what is at stake is long overdue because without this knowledge, small groups with vested interests and unfounded claims have been able to dominate debate and dictate management actions.

As a result of ineffective management, horse populations are now expanding and causing well‐documented damage to Australia’s alpine parks, placing at risk almost $10M spent on restoration after livestock grazing ended. The costs of horse control and restoration escalate the longer large horse populations remain in the alpine parks.

It is crucial that feral horse numbers are rapidly reduced to levels where ecosystems begin to recover. Aerial culling is needed as part of the toolbox to achieve that reduction.

Driscoll DA, Worboys GL, Allan H, Banks SC, Beeton NJ, Cherubin RC, Doherty TS, Finlayson CM, Green K, Hartley R, Hope G, Johnson CN, Lintermans M, Mackey B, Paull DJ, Pittock J, Porfirio LL, Ritchie EG, Sato CF, Scheele BC, Slattery DA, Venn S, Watson D, Watson M, Williams RM (2019) Impacts of feral horses in the Australian Alps and evidence-based solutions. Ecological Management & Restoration PDF DOI 

Animal movements in fire-prone landscapes

Authors: Dale G Nimmo, Sarah Avitabile, Sam C Banks, Rebecca Bliege Bird, Kate Callister, Michael F Clarke, Chris R Dickman, Tim S Doherty, Don A Driscoll, Aaron C Greenville, Angie Haslem, Luke T Kelly, Sally A Kenny, José J Lahoz‐Monfort, Connie Lee, Steven Leonard, Harry Moore, Thomas M Newsome, Catherine L Parr, Euan G Ritchie, Kathryn Schneider, James M Turner, Simon Watson, Martin Westbrooke, Mike Wouters, Matthew White, and Andrew F Bennett.

Published in: Biological Reviews

Abstract

Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire‐prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention.

Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations.

We review animal movements in response to the immediate and abrupt impacts of fire, and the longer‐term successional changes that fires set in train.

We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards.

We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology.

We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire‐prone ecosystems.

Nimmo DG, Avitabile S, Banks SC, Bliege Bird R, Callister K, Clarke MF, Dickman CR, Doherty TS, Driscoll DA, Greenville AC, Haslem A, Kelly LT, Kenny SA, Lahoz-Monfort JJ, Lee C, Leonard S, Moore H, Newsome TM, Parr CL, Ritchie EG, Schneider K, Turner JM, Watson S, Westbrooke M, Wouters M, White M, Bennett AF (2018) Animal movements in fire-prone landscapes. Biological Reviews PDF DOI

The secret life of possums: data loggers reveal the movement ecology of an arboreal mammal

Authors: Blake M Allan, Dale G Nimmo, John P Y Arnould, Jennifer K Martin, and Euan G Ritchie

Published in: Journal of Mammalogy

Abstract

Understanding animal movement patterns is fundamental to ecology, as it allows inference about species’ habitat preferences and their niches. Such knowledge also underpins our ability to predict how animals may respond to environmental change, including habitat loss and modification. Data-logging devices such as GPS trackers and accelerometers are rapidly becoming cheaper and smaller, allowing movement at fine scales to be recorded on a broad range of animal species.

We examined movement patterns of an arboreal mammal (bobuck, Trichosurus cunninghami) in a highly fragmented forest ecosystem.

The GPS data showed males travelled greater distances than females in linear roadside strip habitats, but not in forest fragments. The accelerometer data showed that both sexes exhibited higher activity levels in roadside habitats compared to forest fragments. By coupling GPS and accelerometer data, we uncovered for this species an ecological pattern similar to other mammals: that male bobucks had higher activity levels than females for a given distance travelled.

Our findings also suggest that habitat fragmentation changes the amount and type of activity bobucks perform while moving, and that linear forest strips could be considered “energetically challenging” habitats, which informs how we should manage the spatial distribution of key supplementary resources for this species such as nest sites and minimum fragment sizes.

Allan BM, Nimmo DG, Arnould JPY, Martin JK, Ritchie EG (2018) The secret life of possums: data loggers reveal the movement ecology of an arboreal mammal. Journal of Mammalogy PDF DOI

Diversity in Australia’s tropical savannas: An integrative taxonomic revision of agamid lizards from the genera Amphibolurus and Lophognathus (Lacertilia: Agamidae)

Authors: Jane Melville, Euan G Ritchie, Stephanie N J Chapple, Richard E Glor And James A Schulte II

Published in: Memoirs of Museum Victoria, volume 77

Abstract

The taxonomy of many of Australia’s agamid lizard genera remains unresolved because morphological characters have proved to be unreliable across numerous lineages. We undertook a morphological study and integrated this with a recent genetic study to resolve long-standing taxonomic problems in three genera of large-bodied Australian agamid lizards: Amphibolurus, Gowidon and Lophognathus. We had broad geographic sampling across genera, including all currently recognised species and subspecies.

Using an integrative taxonomic approach, incorporating mitochondrial (ND2) and nuclear (RAG1) genetic data, and our morphological review, we found that both generic and species-level taxonomic revisions were required. We revise generic designations, creating one new genus (Tropicagama gen. nov.) and confirming the validity of Gowidon, giving a total of four genera. In addition, we describe a new species (Lophognathus horneri sp. nov.) and reclassify two other species.

Our results provide a significant step forward in the taxonomy of some of Australia’s most iconic and well-known lizards and provide a clearer understanding of biogeographic patterns across Australia’s monsoonal and arid landscapes.

Melville J, Ritchie EG, Chapple SNJ, Glor RE Schulte II JA (2018) Diversity in Australia’s tropical savannas: An integrative taxonomic revision of agamid lizards from the genera Amphibolurus and Lophognathus (Lacertilia: Agamidae). Memoirs of Museum Victoria PDF DOI

Towards meaningful monitoring: A case study of a threatened rodent

Authors: Hayley M Geyle, Gurutzeta Guillera‐Arroita, Hugh F Davies, Ronald S C Firth, Brett P Murphy, Dale G Nimmo, Euan G Ritchie, John C Z Woinarski, and Emily Nicholson

Published in: Austral Ecology

Abstract

Detecting trends in species’ distribution and abundance are essential for conserving threatened species, and depend upon effective monitoring programmes. Despite this, monitoring programmes are often designed without explicit consideration of their ability to deliver the information required by managers, such as their power to detect population changes.

Here, we demonstrate the use of existing data to support the design of monitoring programmes aimed at detecting declines in species occupancy. We used single‐season occupancy models and baseline data to gain information on variables affecting the occupancy and detectability of the threatened brush‐tailed rabbit‐rat Conilurus penicillatus (Gould 1842) on the Tiwi Islands, Australia. This information was then used to estimate the survey effort required to achieve sufficient power to detect changes in occupancy of different magnitudes.

We found that occupancy varied spatially, driven primarily by habitat (canopy height and cover, distance to water) and fire history across the landscape. Detectability varied strongly among seasons, and was three times higher in the late dry season (July–September), compared to the early dry season (April–June). Evaluation of three monitoring scenarios showed that conducting surveys at times when detectability is highest can lead to a substantial improvement in our ability to detect declines, thus reducing the survey effort and costs.

Our study highlights the need for careful consideration of survey design related to the ecology of a species, as it can lead to substantial cost savings and improved insight into species population change via monitoring.

Geyle HM, Guillera-Arroita G, Davies HF, Firth RSC, Murphy BP, Nimmo DG, Ritchie EG, Woinarski JCZ, Nicholson E (2018) Towards meaningful monitoring: A case study of a threatened rodent. Austral Ecology, PDF DOI

Continental patterns in the diet of a top predator: Australia’s dingo

Authors: Tim S Doherty, Naomi E Davis, Chris R Dickman, David M Forsyth, Mike Letnic, Dale G Nimmo, Russell Palmer, Euan G Ritchie, Joe Benshemesh, Glenn Edwards, Jenny Lawrence, Lindy Lumsden, Charlie Pascoe, Andy Sharp, Danielle Stokeld, Cecilia Myers, Georgeanna Story, Paul Story, Barbara Triggs, Mark Venosta, Mike Wysong, and Thomas M Newsome

Published in: Mammal Review

Abstract

Conserving large carnivores is controversial because they can threaten wildlife, human safety, and livestock production. Since large carnivores often have large ranges, effective management requires knowledge of how their ecology and functional roles vary biogeographically.

We examine continental‐scale patterns in the diet of the dingo – Australia’s largest terrestrial mammalian predator. We describe and quantify how dingo dietary composition and diversity vary with environmental productivity and across five bioclimatic zones: arid, semi‐arid, tropical, sub‐tropical, and temperate.

Based on 73 published and unpublished data sets from throughout the continent, we used multivariate linear modelling to assess regional trends in the occurrence of nine food groups (arthropods, birds, reptiles, European rabbits Oryctolagus cuniculus, medium‐sized (25–125 kg) and large (169–825 kg) exotic ungulates (including livestock), and other small (<0.5 kg) medium‐sized (0.5–6.9 kg) and large (≥7 kg) mammals) in dingo diets. We also assessed regional patterns in the dietary occurrence of livestock and the relationship between dietary occurrence of rabbits and small, medium‐sized and large mammals.

Dingoes eat at least 229 vertebrate species (66% mammals, 22% birds, 11% reptiles, and 1% other taxa). Dietary composition varied across bioclimatic zones, with dingo diets in the arid and semi‐arid zones (low‐productivity sites) having the highest occurrence of arthropods, reptiles, birds, and rabbits. Medium‐sized mammals occurred most frequently in temperate and sub‐tropical zone diets (high‐productivity sites), large mammals least in the arid and sub‐tropical zones, and livestock most in the arid and tropical zones. The frequency of rabbits in diets was negatively correlated with that of medium‐sized, but not small or large mammals.

Dingoes have a flexible and generalist diet that differs among bioclimatic zones and with environmental productivity in Australia. Future research should focus on examining how dingo diets are affected by local prey availability and human‐induced changes to prey communities.

Doherty TS, Davis NE, Dickman CR, Forsyth DM, Letnic M, Nimmo DG, Palmer R, Ritchie EG, Benshemesh J, Edwards G, Lawrence J, Lumsden L, Pascoe C, Sharp A, Stokeld D, Myers C, Story G, Story P, Triggs B, et al. (2018) Continental patterns in the diet of a top predator: Australia’s dingo, Mammal Review, PDF DOI

Species definitions shape policy

Authors: Euan G Ritchie, Bradley P Smith, Lily M van Eeden, and Dale G Nimmo

Published in: Science, volume 361, issue 6,409 (September 2018)

The names we assign to organisms, and why, have important ramifications for our understanding of Earth’s diversity and, more practically, how it is managed. For example, wolves, coyotes, domestic dogs, and other canids are often considered distinct (1), but their members can, and frequently do, interbreed (2). Differing concepts of species—which might take into account morphology, ecology, behaviour, genetics, or evolutionary history (3) —could describe canids as very few or many species, depending on which concepts are used and how strictly they are applied. Which definition scientists adopt can have political and ecological consequences.

The dingo (Canis dingo) has traditionally been considered native in Australia, given evidence of its presence before the year 1400 (4) and indications that it has lived in Australia for at least 5,000 years (5). This designation meant that Western Australia had to have a management strategy in place for the dingo, along with other native fauna. However, a recent paper (6) argues that dingoes are in fact C. familiaris because they don’t satisfy zoological nomenclature protocols nor sufficiently differ genetically or morphologically from other canids, including domestic dogs.

The Western Australian government cited this work in justifying its recent decision to declare the dingo a non-native species under the state’s Biodiversity Conservation Act (BCA) (7). The new order removesthe government requirement to manage the species. As a result, dingoes can now be killed anywhere in the state without a BCA license. A potential increase in lethal control of dingoes could have dire consequences for Australia’s ecosystems. The dingo is Australia’s largest terrestrial top predator (adults typically weigh 15 to 20 kg (8)), it fulfils a crucial ecological role, and it has strong cultural significance for Australia’s Indigenous people (8).

Taxonomy serves a critical purpose for cataloguing and conserving biodiversity, but different interpretations and applications of species concepts can affect management decisions. Policy-makers may use the interpretations that justify their preferred values, such as prioritizing livestock more than biodiversity protection. It is therefore imperative that scientists carefully engage in the policy decision-making process. Scientists must work with policy-makers to convey the multiple dimensions and values that can affect species delineation and make clear the potential consequences of applying such classifications.

  1.  J.Clutton-Brocketal.,Bull.Br.Mus.Nat.Hist.Zool. 29,117 (1976).
  2. Z.Fanetal.,Gen.Res.26,163(2016).
  3. F.E.Zachos, Mammal Rev.10.1111/mam.12121(2018).
  4. Department of the Environment and Energy, Australian Government, “Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act)” (1999); http://www.environment.gov.au/epbc
  5. K.M.Cairns, A.N.Wilton, Genetica 144,553(2016).
  6. S.M.Jackson et al., Zootaxa 4317,201(2017).
  7. M.Bamford, “Dingoes to remain classified as non-native wild dogs under reform to Western Australian law,” ABC News (2018); http://www.abc.net.au/news/2018-08-28/dingoes-will-no-longer-be-native-animals-in-western-australia/10172448
  8. M.Letnic et al., Biol.Rev. 87,390(2012).

Ritchie EG, Smith BP, van Eeden LM, Nimmo DG (2018) Species definitions shape policy, Science PDF DOI