Category Archives: Publications

Mainstreaming human and large carnivore coexistence through institutional collaboration

Authors: Tibor Hartel, Ben C Scheele, Abi Tamim Vanak, Laurențiu Rozylowicz, John D C Linnell, and Euan G Ritchie

Published in: Conservation Biology

Abstract

Achieving human‐large carnivore coexistence in Human Dominated Landscapes (HDL) is a key challenge for societies globally. This challenge cannot be adequately met with the current sectoral approaches of HDL governance and an academic sector largely dominated by disciplinary silos.

In this essay, we urge academia (universities and other research institutions and organisations) to take a more active role in embracing societal challenges around large carnivore conservation in HDL. Drawing on key lessons from populated regions of Europe, Asia and South America with significant densities of large carnivores, we illustrate how academia can help facilitate cross‐sectoral cooperation for mainstreaming human large carnivore coexistence.

We propose three ways for academia to engage with human‐large carnivore coexistence in HDL.

First, academia should better embrace the principles and methods of sustainability sciences and create institutional spaces for the implementation of transdisciplinary curricula and projects.

Second, researchers should reflect on the research approaches (i.e. disciplinary, interdisciplinary or transdisciplinary) they apply, and how their outcomes could aid leveraging institutional transformations for mainstreaming human‐large carnivore coexistence.

Third, researchers should engage with various institutions and stakeholder groups for creating novel institutional structures which can respond to the multiple challenges of HDL management, as well as human‐large carnivore coexistence.

Success in mainstreaming human‐large carnivore coexistence in HDL will rest on our collective ability to think and act cooperatively. Such a conservation achievement, if realized, stands to have far-reaching benefits for people and biodiversity alike.

Hartel T, Scheele BC, Vanak AT, Rozylowicz L, Linnell JDC, Ritchie EG (2019) Mainstreaming human and large carnivore coexistence through institutional collaboration. Conservation Biology PDF DOI

Persistence through tough times: fixed and shifting refuges in threatened species conservation

Authors: April E Reside, Natalie J Briscoe, Chris R Dickman, Aaron C Greenville, Bronwyn A Hradsky, Salit Kark, Michael R Kearney, Alex S Kutt, Dale G Nimmo, Chris R Pavey, John L Read, Euan G Ritchie, David Roshier, Anja Skroblin, Zoe Stone, Matt West, and Diana O Fisher

Published in: Biodiversity and Conservation

Abstract

It may be possible to avert threatened species declines by protecting refuges that promote species persistence during times of stress. To do this, we need to know where refuges are located, and when and which management actions are required to preserve, enhance or replicate them.

Here we use a niche-based perspective to characterise refuges that are either fixed or shifting in location over ecological time scales (hours to centuries). We synthesise current knowledge of the role of fixed and shifting refuges, using threatened species examples where possible, and examine their relationships with stressors including drought, fire, introduced species, disease, and their interactions.

Refuges often provide greater cover, water, food availability or protection from predators than other areas within the same landscapes. In many cases, landscape features provide refuge, but refuges can also arise through dynamic and shifting species interactions (e.g., mesopredator suppression). Elucidating the mechanisms by which species benefit from refuges can help guide the creation of new or artificial refuges. Importantly, we also need to recognise when refuges alone are insufficient to halt the decline of species, and where more intensive conservation intervention may be required.

We argue that understanding the role of ecological refuges is an important part of strategies to stem further global biodiversity loss.

Reside AE, Briscoe NJ, Dickman CR, Greenville AC, Hradsky BA, Kark S, Kearney MR, Kutt AS, Nimmo DG, Pavey CR, Read JL, Ritchie EG, Roshier D, Skroblin A, Stone Z, West M, Fisher DO (2019) Persistence through tough times: fixed and shifting refuges in threatened species conservation. Biodiversity and Conservation PDF DOI

The truth about cats and dogs: assessment of apex- and mesopredator diets improves with reduced observer uncertainty

Authors: Michael L Wysong, Ayesha IT Tulloch, Leonie E Valentine, Richard J Hobbs, Keith Morris, and Euan G Ritchie

Published in: Jornal of Mammalogy

Abstract

Dietary (scat) analysis is a key tool for assessing the potential effects of predators on prey and for comparing resource use between predators, information that is crucial for effective wildlife management. However, misidentification of the species from which scats originate could result in inaccurate conclusions regarding predator–prey interactions and their consequences for ecosystems, which may ultimately compromise conservation and management actions.

To address this issue, we developed a framework for decision-making in the face of uncertain scat species origin by incorporating field, laboratory, and molecular identification techniques.

We used the framework to examine the diets of two predators, a native apex predator (dingo, Canis lupus dingo) and an invasive mesopredator (feral cat, Felis catus), from 696 field-collected scats in the arid zone of Australia.

We examined how uncertainty regarding scat species origin changed perceptions of the nature of the relationship between coexisting predators and their prey.

The extent of dietary overlap between dingoes and cats varied with the method used to identify scat species origin. Dietary overlap assessed by laboratory identifications was twice as high as when uncertainty in scat species origin was resolved through our decision framework.

If uncertainty in scat species origin is not resolved in dietary studies, practitioners and decision-makers relying on this information run the risk of making misinformed conclusions regarding the ecological function of predators (including potential impacts on threatened species), which could have perverse outcomes if the wrong predators are targeted for management.

With uncertainty in scat species origin resolved through our decision framework, a low level of dietary overlap between the two predators was demonstrated, and medium-sized mammals most threatened with extinction were shown to be more at risk of impact from feral cat than from dingo depredations.

Wysong ML, Tulloch AIT, Valentine LE, Hobbs RJ, Morris K, Ritchie EG (2019) The truth about cats and dogs: assessment of apex- and mesopredator diets improves with reduced observer uncertainty. Journal of Mammalogy PDF DOI

Taxonomic status of the Australian dingo: the case for Canis dingo Meyer, 1793

Authors: Bradley P Smith, Kylie M Cairns, Justin W Adams, Thomas M Newsome, Melanie Fillios, Eloïse C Déaux, William C H Parr, Mike Letnic, Lily M Van Eeden, Robert G Appleby, Corey J A Bradshaw, Peter Savolainen, Euan G Ritchie, Dale G Nimmo, Clare Archer-Lean, Aaron C Greenville, Christopher R Dickman, Lyn Watson, Katherine E Moseby, Tim S Doherty, Arian D Wallach, Damian S Morrant, and Mathew S Crowther

Published in: Zootaxa

Abstract

The taxonomic status and systematic nomenclature of the Australian dingo remain contentious, resulting in decades of inconsistent applications in the scientific literature and in policy.

Prompted by a recent publication calling for dingoes to be considered taxonomically as domestic dogs (Jackson et al. 2017, Zootaxa 4317, 201-224), we review the issues of the taxonomy applied to canids, and summarise the main differences between dingoes and other canids.

We conclude that:

  1. the Australian dingo is a geographically isolated (allopatric) species from all other Canis, and is genetically, phenotypically, ecologically, and behaviourally distinct; and
  2. the dingo appears largely devoid of many of the signs of domestication, including surviving largely as a wild animal in Australia for millennia.

The case of defining dingo taxonomy provides a quintessential example of the disagreements between species concepts (e.g., biological, phylogenetic, ecological, morphological). Applying the biological species concept sensu stricto to the dingo as suggested by Jackson et al. (2017) and consistently across the Canidae would lead to an aggregation of all Canis populations, implying for example that dogs and wolves are the same species. Such an aggregation would have substantial implications for taxonomic clarity, biological research, and wildlife conservation. Any changes to the current nomen of the dingo (currently Canis dingo Meyer, 1793), must therefore offer a strong, evidence-based argument in favour of it being recognised as a subspecies of Canis lupus Linnaeus, 1758, or as Canis familiaris Linnaeus, 1758, and a successful application to the International Commission for Zoological Nomenclature — neither of which can be adequately supported.

Although there are many species concepts, the sum of the evidence presented in this paper affirms the classification of the dingo as a distinct taxon, namely Canis dingo.

Smith BP, Cairns KM, Adams JW, Newsome TM, Fillios M, Déaux EC, Parr WCH, Letnic M, Van Eeden LM, Appleby RG, Bradshaw CJA, Savolainen P, Ritchie EG, Nimmo DG, Archer-Lean C, Greenville AC, Dickman CR, Watson L, Moseby KE, Doherty TS, Wallach AD, Morrant DS, Crowther MS (2019) Taxonomic status of the Australian dingo: the case for Canis dingo Meyer, 1793. Zootaxa PDF DOI

The Conversation: Feral cat cull: why the two million target is on scientifically shaky ground

The government’s target to kill 2 million feral cats sounds impressive, but lacks scientific rigour. Image credit Daniel Parks via Flickr

By Tim Doherty (Deakin University), Dale Nimmo (Charles Sturt University), Don Driscoll (Deakin University), Euan Ritchie (Deakin University), and Ricky Spencer (Western Sydney University).

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Australian government’s target of killing two million feral cats by 2020 attracted significant public interest and media attention when it was unveiled in 2015.

But in our new research, published today in Conservation Letters, we explain why it has a shaky scientific foundation.

The target was developed for the Threatened Species Strategy. At the time of its launch in 2015, there was no reliable estimate of the size of Australia’s feral cat population. Figures of between five million and 18 million were quoted, but their origin is murky: it’s possible they came from a single estimate of feral cat density in Victoria, extrapolated across the continent.

A recent review estimated a much smaller population size — probably varying from two million to six million, depending on environmental conditions. Using this estimate, the proportion of Australia’s cat population to be killed under the government’s target is now likely in the range 32–95%, rather than 11–40% based on the original population estimate.

Targets for the removal of pest animals should consider how they will affect an animal’s current and future population size. But because a scientific justification for the two million target was never provided, it is unclear whether or how the revised estimate would alter the target.

Hitting the target, missing the point

For cat control to have a lasting effect on feral populations, it needs to be intense, sustained, and carried out over large areas. This is because cats can rapidly reproduce and re-invade areas. To benefit threatened species, cat control also needs to be undertaken in areas that contain — or could potentially contain — native species that are threatened by cats.

Research commissioned by the government conservatively estimated that around 211,500 feral cats were killed in 12 months in 2015–16 (ranging between around 135,500 and 287,600). This estimate was used to report that the first-year target to kill 150,000 cats was met with room to spare.

The benefit to threatened species of achieving this target is unclear, because we don’t know if the control efforts had a measurable effect on cat populations; whether they took place in areas that would benefit threatened species; or how (or if) the target and related activities contributed to the estimated 211,500 cat deaths.

Around 75% of the killed cats were attributed to shooting by farmers and hunters. It is questionable whether such approaches could keep pace with high rates of population growth and re-invasion from surrounding areas.

These and other issues were known before the target was set, leading experts to recommend that an overall cat culling target should not be set.

Shifting focus

The focus on killing cats risks distracting attention from other threats to native wildlife. These threats include habitat loss, which has been largely overlooked in the Threatened Species Strategy.

Habitat loss is politically sensitive because its main driver is the clearing of land to make way for economic activities such as agriculture, urban development, and mining. The strategy mentions feral cats more than 70 times, but habitat loss is mentioned just twice and land clearing not at all. Australia has one of the world’s worst rates of land clearing, which has recently increased in some regions. For instance, clearing of native vegetation in New South Wales rose by 800% between 2013 and 2016.

A focus on feral cats is warranted, but not at the expense of tackling other conservation threats too. A comprehensive, integrated approach towards threatened species conservation is essential.

Any upside?

Despite its questionable scientific basis, it is possible that the ambitious nature of the two million target has raised the public profile of feral cats as a conservation issue. However, to our knowledge, there has been no attempt to measure the effectiveness of the target in raising awareness or changing attitudes, and so this remains a hypothetical proposition.

The Threatened Species Strategy has other targets that are more closely linked to conservation outcomes, such as the eradication of cats from five particular islands and the establishment of ten new fenced cat-free exclosures. Achieving these targets will make a small contribution to the culling target, but have a comparatively large benefit for some threatened species.

Australia’s target to kill two million feral cats is a highly visible symbol of a broader campaign, but the success of policies aimed at reducing the impacts of feral cats should focus squarely on the recovery of native species.

Conservation or politics? Australia’s target to kill two million cats

Authors: Tim S Doherty, Don A Driscoll, Dale G Nimmo, Euan G Ritchie and Ricky‐John Spencer

Published in: Conservation Letters

Abstract

The Australian Government’s five‐year Threatened Species Strategy contains four priority action areas and associated targets.

Here, we argue that the well‐publicised target to cull two million feral cats has a weak scientific basis because:

  1. reliable estimates of Australia’s cat population size did not exist when the target was set;
  2. it is extremely difficult to measure progress (numbers of cats killed) in an accurate, reliable way; and, most importantly,
  3. the cull target is not explicitly linked to direct conservation outcomes (e.g., measured increases in threatened species populations).

These limitations mean that the cull target fails to meet what would be considered best practice for pest management. The focus on killing cats runs the risk of distracting attention away from other threats to biodiversity, most prominent of which is widespread, ongoing habitat loss, which has been largely overlooked in the Threatened Species Strategy.

The culling target is a highly visible symbol of a broader campaign around feral cat research and management in Australia, rather than a direct indicator of conservation action and success. We are concerned that progress toward the 2 million target could be misinterpreted as progress toward conserving threatened species, when the link between the two is not clear.

Doherty TS, Driscoll DA, Nimmo DG, Ritchie EG, Spencer R (2019) Conservation or politics? Australia’s target to kill 2 million cats, Conservation Letters PDF DOI

Improving the assessment of food system sustainability

Authors: Michalis Hadjikakou, Euan G Ritchie, Kate E Watermeyer, and Brett A Bryan

Published in: The Lancet – Planetary Health

The global food system is causing unsustainable pressures on the environment, leading to widespread land use change, increased greenhouse gas emissions, disruption of the nitrogen and phosphorus cycles, biodiversity loss, and freshwater depletion and pollution. Environmental pressures are mounting as populations grow and diets change, escalating the need to make food production and consumption more sustainable. Yet, there are limitations in the current analysis of global food system sustainability. We believe there are four main areas that could be improved to make such analysis more comprehensive and insightful. These improvements could have important repercussions on the development of effective evidence-based policy that ultimately promotes production efficiencies and sustainable diets.

One set of opportunities for improvement in the analysis of food system sustainability relates to the robustness of the dietary scenarios that are modelled. First, these scenarios need to be made more plausible. Although assessment of radical shifts in human diets might be useful in highlighting the effects of animal-based versus plant-based foods, we question the benefit of emphasising the most extreme of scenarios (ie, a complete switch from omnivore to vegetarian or vegan diets), when the foreseeable global trend is heading strongly in the opposite direction. In addition, analyses of these extreme diet substitution scenarios tend to focus on greenhouse gas emissions, but in such scenarios, trade-offs between sustainability indicators are highly likely—aptly highlighted by the increased use of water in scenarios that model shifts from grass-fed livestock towards water-intensive crops. We argue that it is more insightful to model ambitious yet achievable, context-specific reductions in animal products, overconsumption (particularly of discretionary foods), and food waste, in line with those recently recommended by the EAT-Lancet Commission on sustainable food systems for overall planetary health.

Secondly, more granular and dynamic analyses are needed. Estimates of environmental effects underpinning global food system analyses are typically based on life cycle assessment, an environmental accounting framework that captures effects from farm-to-fork. While the rigour and comprehensiveness of available life cycle assessment data and associated meta-analyses are improving and encompassing important trade-offs between sustainability objectives,5 significant shortcomings remain, notably in terms of low commodity-level detail and the use of global averages to infer region-specific or nation-specific environmental intensities (defined in life cycle assessments as the impact per functional unit of production). In addition, most life cycle assessments are static, and therefore do not represent system feedbacks that incorporate changes in demand because of production efficiency enhancements, or marginal changes in environmental effects involved in large-scale dietary shifts—such as when animal-based products are completely eliminated. The quantification of these dynamics and their system-wide environmental impacts is an opportunity to greatly improve sustainability assessments of different food products and proposed substitutions.

Thirdly, protein sources beyond conventional livestock need greater consideration. In many parts of the world, alternative animal protein sources such as abundant native species that are better adapted to local conditions (eg, kangaroo in Australia and deer in the northern hemisphere) can contribute to human nutrition, with such sourcing having considerably lower environmental effects than farming of conventional livestock. Many countries are also host to introduced feral animal populations that could serve as alternative protein sources—for example, Australia has substantial feral deer, goat, rabbit, pig, horse, and camel populations. Partly replacing existing mainstream protein sources with wild harvests of these alternative sources could achieve co-benefits for the environment (eg, through reducing emissions, land degradation, and the effects on native biodiversity), and improve human health, since game meat is typically leaner than lamb and beef. Conventional analyses also fail to account for other transformative shifts in animal-sourced protein, such as those towards laboratory-grown meat, insect-derived protein, and feeding animals on ecological leftovers such as food waste or grass from pastures. Including potential shifts to novel low-impact protein sources would ensure more comprehensive modelling of the associated environmental effects.

Finally, analyses should better quantify the diverse effects of food production on biodiversity and ecosystems. Food production contributes considerably to species extinction, which has detrimental effects on many ecosystems and plant and animal communities that are essential for supporting human life. Yet, there is an overreliance on proxy indicators such as land use when assessing terrestrial food systems. Previous research has highlighted how the extent of agricultural land area is not a good proxy for biodiversity impact, because of differences in production intensity and heterogeneity in biodiversity values. This limited analysis also extends to marine and freshwater food production. Stock depletion, bycatch, and habitat modification or loss, resulting from intensive aquaculture and fishing practices such as trawling, have substantial effects on the biodiversity of coastal and oceanic ecosystems. However, although some studies have considered the environmental intensities of aggregate categories such as farmed fish and crustaceans, the effect of fishing on wild stocks is typically not encompassed in life cycle assessments, despite appropriate data being available. Integration of a more diverse range of biodiversity indicators into the assessment of food system sustainability would allow for more meaningful analyses.

Taking advantage of the opportunities outlined here could facilitate a more complete understanding of the environmental effects of food production and consumption. Embracing these advances is a key prerequisite for developing effective policy recommendations. Our recommendations aim to foster a more comprehensive and nuanced debate on sustainable diets and the food system within the context of global environmental limits.

We declare no competing interests. We thank D Driscoll and BG Ridoutt for their insightful comments on the manuscript.

Hadjikakou M, Ritchie EG, Watermeyer KE, Bryan BA (2019) Improving the assessment of food system sustainability. The Lancet – Planetary Health PDF DOI