Publications Research

Phylogeography of the antilopine wallaroos (Macropus antilopinus) across tropical northern Australia

Authors: Jessica J Wadley, Damien A Fordham, Vicki A Thomson, Euan G Ritchie and Jeremy J Austin

Published in: Ecology and Evolution (early view)


The distribution of antilopine wallaroo, Macropus antilopinus, is marked by a break in the species’ range between Queensland and the Northern Territory, coinciding with the Carpentarian barrier.

Previous work on M. antilopinus revealed limited genetic differentiation between the Northern Territory and Queensland M. antilopinus populations across this barrier. The study also identified a number of divergent lineages in the Northern Territory, but was unable to elucidate any geographic structure.

Here, we re-examine these results to (1) determine phylogeographic patterns across the range of M. antilopinus and (2) infer the biogeographic barriers associated with these patterns.

The tropical savannahs of northern Australia: from the Cape York Peninsula in the east, to the Kimberley in the west. We examined phylogeographic patterns in M. antilopinus using a larger number of samples and three mtDNA genes: NADH dehydrogenase subunit 2, cytochrome b, and the control region. Two datasets were generated and analyzed: (1) a subset of samples with all three mtDNA regions concatenated together and (2) all samples for just control region sequences that included samples from the previous study. Analysis included generating phylogenetic trees based on Bayesian analysis and intraspecific median-joining networks.

The contemporary spatial structure of M. antilopinus mtDNA lineages revealed five shallow clades and a sixth, divergent lineage. The genetic differences that we found between Queensland and Northern Territory M. antilopinus samples confirmed the split in the geographic distribution of the species. We also found weak genetic differentiation between Northern Territory samples and those from the Kimberley region of Western Australia, possibly due to the Kimberley Plateau–Arnhem Land barrier. Within the Northern Territory, two clades appear to be parapatric in the west, while another two clades are broadly sympatric across the Northern Territory. MtDNA diversity of M. antilopinus revealed an unexpectedly complex evolutionary history involving multiple sympatric and parapatric mtDNA clades across northern Australia.

These phylogeographic patterns highlight the importance of investigating genetic variation across distributions of species and integrating this information into biodiversity conservation.

Wadley JJ, Fordham DA, Thomson VA, Ritchie EG, Austin JJ (2016) Phylogeography of the antilopine wallaroo (Macropus antilopinus) across tropical northern Australia. Ecology and Evolution PDF DOI 


Publications Research

Fire severity and fire-induced landscape heterogeneity affect arboreal mammals in fire-prone forests

Authors: Evelyn K Chia, Michelle Bassett, Dale G Nimmo, Steve W J Leonard, Euan G Ritchie, Michael F Clarke and Andrew F Bennett

Published in: Ecoshere, volume 6, issue 10 (October 2015)

We examined the role of topography, fire history and fire sensitivity on the occurrence of arboreal mammals 2 to 3 years after wildfire in temperate Eucalypt forests. Image credit: Elizabeth Donoghue via Flickr.


In fire-prone regions, wildfire influences spatial and temporal patterns of landscape heterogeneity. The likely impacts of climate change on the frequency and intensity of wildfire highlights the importance of understanding how fire-induced heterogeneity may affect different components of the biota.

Here, we examine the influence of wildfire, as an agent of landscape heterogeneity, on the distribution of arboreal mammals in fire-prone forests in south-eastern Australia.

First, we used a stratified design to examine the role of topography, and the relative influence of fire severity and fire history, on the occurrence of arboreal mammals 2–3 years after wildfire. Second, we investigated the influence of landscape context on the occurrence of arboreal mammals at severely burnt sites. Forested gullies supported a higher abundance of arboreal mammals than slopes.

Fire severity was the strongest influence, with abundance lower at severely burnt than unburnt sites. The occurrence of mammals at severely burned sites was influenced by landscape context: abundance increased with increasing amount of unburnt and understorey-only burnt forest within a one kilometre radius.

These results support the hypothesis that unburnt forest and moist gullies can serve as refuges for fauna in the post-fire environment and assist recolonization of severely burned forest. They highlight the importance of spatial heterogeneity created by wildfire and the need to incorporate spatial aspects of fire regimes (e.g. creation and protection of refuges) for fire management in fire-prone landscapes.

Chia EK, Bassett M, Nimmo DG, Leonard SWJ, Ritchie EG, Clarke MF, Bennett AF (2015) Fire severity and fire-induced landscape heterogeneity affect arboreal mammals in fire-prone forests, Ecosphere, 6:10 PDF DOI