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Applied ecology has historically approached management 
with a narrow view, using a simplified single-species or 
single-threat frame for decision problems1. Such approaches 

to ecosystem management have been exposed as inadequate in many 
fields, as they lead to poor and even perverse outcomes in fisher-
ies2, conservation3, invasive species management4 and biocontrol5. 
The management of ecosystems is a ‘wicked problem’, involving a 
complex array of interacting organisms, processes, social and policy 
dimensions, and scientific disciplines6. Accounting for interactions, 
feedback loops and dependencies between ecosystem components 
is therefore fundamental to understanding and managing ecosys-
tems7,8. This includes spatial and temporal dynamics, interactions 
between organisms and disturbances, anthropogenic impacts9–11, 
and complementarities across species. The limited information base 
available for analyses that integrate these relationships has histori-
cally precluded the implementation of complex ecosystem model-
ling. This has gradually changed over recent decades, particularly 
in the past 10 years, and now ecosystem modelling approaches are 
in high demand.

Although there have been considerable efforts to model marine 
and terrestrial ecosystems, these have largely been in isolation, with 
little cross-pollination between the two realms. Here, we provide 
a synthesis of general ecosystem modelling techniques that covers 
both terrestrial and marine ecosystems. Our aim is to provide guid-
ance for potential ecosystem modellers in selecting an approach that 
suits their system, objectives and constraints. We outline a selec-
tion of currently available approaches and the key considerations 
for selecting ecosystem modelling methods. Although they are not 

exhaustive, the approaches discussed are representative and provide 
a good indication of the possible and commonly used approaches 
available to ecosystem modellers. We place these methods in the 
context of applied management problems and discuss how particu-
lar ecosystem modelling techniques can help to embrace the uncer-
tainty associated with complex systems.

What is an ecosystem model?
Ecosystem models attempt to incorporate ecosystem components 
(for example, populations, species, functional groups) and processes 
(for example, predator–prey interactions, large and small perturba-
tions, dispersal) into one modelling framework. We define an eco-
system model as a model that describes the interactions between 
at least two ecosystem components (for example, a species or func-
tional group), whereby the interactions are real ecological processes 
(for example, predation, dispersal or perturbations). Ecosystem 
models are parametrized using field-collected, experimental and/or 
expert-elicited data to make inferences about specific components 
(for example, individual species), the entire ecosystem, or even a 
large part of the coupled socio-ecological system12,13. The models 
are often visualized as networks, where nodes denote interacting 
ecological components, and the causal relationships between them 
are shown by edges (Box 1). These models were developed because 
ecologists needed to disentangle, and therefore predict, the outcomes 
of complex interactions between ecosystem components in a mean-
ingful way12,14,15. Such models have been used extensively in fisheries 
and other marine contexts16, and their use is increasing in terrestrial 
ecosystem management17, including scenario prediction18–20.
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Building ecosystem models typically involves trade-offs between 
approaches that are highly complex and cannot be extrapolated 
beyond the sample system, and those that sacrifice some complexity 
to allow extrapolation to other ecosystems and situations21,22. For 
example, the structural equation model developed by Schweiger 
et al.23 to manage wetland condition in the Rocky Mountain 
National Park, United States, is very complex and parametrizes the 
model with field-collected data, but its specificity means that the 
inferences would probably not be easily and generally transferable 
to other systems22. The main sources of uncertainty in ecosystem 
models are parameter (for example, the parameter estimates applied 
to the model structure) and structural (for example, ecosystem 
components included in the model, and the relationships between 
them, as well as completely missing processes). As the structure of 

models becomes more complex, uncertainty in model predictions 
typically increases24. Because of this, constructing a single eco-
system model that incorporates all possible complexities is rarely 
advised, as the model outputs are too uncertain to inform decision 
making25. However, less complex models can also have limitations, 
particularly related to parameter uncertainty, potential omission of 
key processes (a critical issue where these govern response rates and 
delays in the system), inappropriate scales and the shape of rela-
tionships between components (for example, linear versus nonlin-
ear relationships). This is why ensemble modelling — which can 
explicitly consider both parameter and structural uncertainty — is 
fast becoming ‘best practice’ amongst marine ecosystem modelling 
groups, particularly when addressing large-scale questions such as 
the effects of climate change (for example, ref. 26).

Box 1 | The mathematics of applied ecosystem modelling

The term ‘ecosystem model’ incorporates a wide variety of representations of ecosystems, with the common thread of representing in-
teractions between ecosystem components and/or processes (for example, species, functional groups and/or perturbations). To illustrate 
the different mathematical approaches to and representations of ecosystem models, we use a simple food web from Central Europe 
containing an apex predator (Eurasian lynx), a mesopredator (red fox), a herbivore (mountain hare) and vegetation, adapted from the 
structural equation model developed by Elmhagen et al.141. Ecosystems are commonly represented as conceptual interaction networks 
(panel a of the figure), which are unparametrized illustrations of interaction networks. These models are essentially diagrammatic and 
are used as a starting point for more complex ecosystem models142. For instance, qualitative models using signed digraphs can be used 
to explore pulse-press perturbations for small-to-moderate network sizes30.

Bayesian belief networks represent ecosystem interactions as a chain of probabilistic events, showing how changes in the probability 
of one ecosystem component flow through to affect the probability of another ecosystem component changing. These models can be 
represented as a graphical structure, or a chain of probabilities (panel b of the figure). For example, Bayesian networks were used to 
model the effects of eutrophication in the Neuse estuary, North Carolina143. Bayesian networks have the advantage of their ability to 
incorporate expert and stakeholder judgements alongside field-collected data. However, their predictive use can be severely hampered 
by the inability to easily capture feedback dynamics and cyclical mechanistic flows.

Network theory encompasses a broad collection of ecosystem modelling approaches predicated on simple parametrizations of 
interaction networks (panel c of the figure). These can range from weighted networks98,113 to structural equation models23. For instance, 
fuzzy cognitive maps are increasingly used for semi-quantitative prediction of the outcomes of changes (for example, reintroductions, 
invasive species control) on ecological networks31.

Ecosystem models that take a dynamical systems theory approach (panel d of the figure) use a deterministic approach to predict 
how ecosystems change over time. Such models are typically based on Lotka–Volterra equations, or similar, and can have demanding 
data requirements, especially if the model is complex. These approaches have been used to predict the ecosystem-wide effects of species 
reintroductions17, seed dispersal on islands94 and the outcomes of invasive species control63, and could have broader applications144.
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• Unparametrized, graphical representation
  of an ecosystem or subset of an ecosystem.
• Key examples: Ritchie et al.142
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  large data requirements.
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Where ni is a measure of the abundance of ecosystem components i (that is, elements A,B,C,D), ri is the growth rate of ecosystem
components i, and αi,j represents the strength of the per-capita interaction between ecosystem components i and j.

dni
dt

= rini +Σ
N

j = 1
αi,jninj
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choosing an ecosystem model
For ecosystem models to be useful, their qualities and structure must 
be matched to the decision problem or management application13. 
The key elements or qualities of ecosystem models can be summa-
rized into four broad categories: the objective of model develop-
ment, the spatial and temporal patterns represented, and both the 
ecosystem components and ecosystem processes modelled. In this 
section, we outline a range of broad approaches that are commonly 
used in applied contexts and assess their frequency of use in each 
category (Fig. 1, and with more detail in Supplementary Table 1).

Objectives of model development. Setting clear objectives is a 
fundamental requirement for successful ecosystem management27. 
Matching the modelling approach to the objectives and decision 
context is therefore an important consideration. Doing so ensures 
the model inferences are relevant to management goals and are an 
appropriate use of the available data. For example, the inferences 
that can be drawn from species co-occurrence models are highly 
dependent on the type of data used — presence-only or presence–
absence species records or abundance data — and whether causal 
inferences can be made from correlative models28. In an applied 

context, there are typically three broad — sometimes complemen-
tary — objectives of ecosystem models (Fig. 1).

Objective 1: Describe and understand the current ecosystem. 
Ecosystem models are regularly used to describe and understand 
the system in question. Most often, this occurs initially as a con-
ceptual model that shows plausible cause-and-effect relationships 
between important ecosystem components (for example, popu-
lations of different species). As increasing amounts of data are 
collected, the parametrization of these models moves towards a 
quantitative, rather than schematic, description (Fig. 1). For exam-
ple, models of signed digraphs, built on early qualitative modelling 
by Levins29, assign interactions between ecosystem components as 
either positive or negative30. Going further, recent fuzzy cognitive 
maps describe the impact of a change in one ecosystem component 
on another as high, medium or low31. Fuzzy cognitive maps can 
then be used to predict semi-quantitatively how changes to one eco-
system component can flow through to affect other components32. 
Where field-collected data or expert judgements are available, semi- 
and fully quantitative descriptions of the relationships between 
ecosystem components can be drawn by using network-based  
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Fig. 1 | Ecosystem modelling methods and their frequency of use for specific purposes. Schematic outlining potential ecosystem modelling approaches 
(rows) and the frequency (rarely, sometimes, often and always) with which each approach is used for different purposes (columns). Modelling approaches 
further to the bottom of the table increase in complexity, data, resources and knowledge required to implement. This figure can be used to determine 
which modelling approach is most appropriate for particular purposes and contexts. *Ensemble ecosystem model in this context refers to ensembles of 
models of one type. For ensembles of ecosystem models of multiple types (for example, an ensemble of MICE and mass-balance models), refer to each of 
the model-specific rows.
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techniques such as Bayesian belief networks, structural equation 
modelling, dynamical systems theory and network analysis. For 
instance, extinction cascade models make predictions of how the 
extinction of one species from a system could then lead to second-
ary extinctions through chain reactions33,34.

Ecosystem models geared toward describing ecosystems can 
also be complex. For example, individual-based modelling has led 
to the development of the Madingley model, which describes the 
global dynamics of the biomass of terrestrial and marine ecosys-
tems35. Similarly, end-to-end ecosystem models attempt to cap-
ture most ecosystem components and processes in some way36. In 
these instances, however, models that aim to represent a large por-
tion of an ecosystem are necessarily coarse in their representation 
of some components, such as using functional groups rather than 
individual species. At more constrained scales, considering only 
planktonic parts of a system, nitrogen–phytoplankton–zooplank-
ton–detritus (NPZD) ecosystem models are one example that links 
the concentration of each of these ecosystem components through 
dynamic equations37. The strength of these techniques lies in their 
ability to use sequences of direct causal pathways, to reveal indi-
rect interactions between ecosystem elements and propagate single 
events through to multiple consequences (for example, extinction 
or trophic cascades). For instance, Bayesian belief networks that 
are parametrized using expert judgement, experimental and field 
data can be used to represent the current understanding of an eco-
system and inform adaptive management38. Smaller-scale models 
(like the NPZD or models of intermediate complexity) can also be 
run quickly — even effectively in near real time for response and 
day-to-day operational management.

Just as capabilities differ between approaches, each model type 
has different limitations. For example, Bayesian belief networks 
cannot easily represent the feedback loops that are crucial for main-
taining ecosystem equilibria, or for generating cyclical dynamics 
(for example, predator–prey cycles). The lack of feedback loops 
means that they have limited capacity to model complex systems, 
compared with larger end-to-end models that account for feedbacks 
as well as multiple ecosystem states and scales but are computation-
ally expensive (Fig. 1).

Objective 2: Forecast or hindcast scenarios. Making predictions 
about ecosystems and their components under possible past, future 
or novel scenarios is a key goal for many ecosystem models —  
particularly in relation to disturbance trajectories or management 
regimes39. The models typically do this by inputting estimates of 
future or historical conditions (such as weather, productivity, dis-
turbance) and extrapolating model outputs to these conditions. For 
example, Lester and Fairweather40 used state-transition models of an 
estuarine ecosystem to predict how disturbances and water-quality 
perturbations could shift the system into different biotic assemblage 
states. The same method was then applied to predict the outcome 
of whole-of-ecosystem perturbations, such as climate change and 
anthropogenic water extraction41. Ecosystem forecasting has been 
used widely in fisheries management42, using approaches such as 
mass balance models (for example, Ecopath43) and individual-based 
models to forecast the productivity of individual fisheries44, through 
to multi-model projections of spatially resolved fish biomass at 
global scales under alternative climate change scenarios26. Tulloch 
et al.45 used a ‘model of intermediate complexity for ecosystem 
assessment’ (known as MICE) paired with climate change scenar-
ios to forecast the effects of climate change on baleen whales due 
to reduced prey availability. Ecosystem modelling approaches are 
useful to assess the expected trajectory of ecosystem condition and 
function or the risk of ecosystem collapse under the International 
Union for Conservation of Nature (IUCN) Red List for Ecosystems 
criteria46; and interaction network analysis has been used to explore 
the role of humans in ecosystems, including hindcasting with  

historical datasets (for example, the removal of First Nations People 
from food webs in Australia after European contact47).

Extrapolation into new scenarios is likely to require predic-
tions outside the scope of model parameters, which can be highly 
uncertain17,48. Thus, to avoid misinterpretation, modellers must be 
explicit about the assumptions being made about those parameters 
and their uncertainty. Failing to communicate these uncertainties 
when forecasting or hindcasting ecosystems can lead to misin-
formed management decisions. For example, forecasts of northern 
cod stocks in Newfoundland, Canada, were overestimated owing to 
inflated abundance estimates, leading to substantial overfishing and 
subsequent collapse of the fishery49,50. Similarly, there are unknowns 
regarding how species will respond to future combinations of envi-
ronment state, anthropogenic stress and climate39, as well as changes 
in ecosystem structure and composition as new species mixes arise 
with differential shifts in species distributions51. These ecological 
shifts and responses have led to an increasing need for models that 
account for range-extending invaders (or extirpations) and parame-
ters that are allowed to change along spatial or temporal gradients52. 
As dynamic approaches are new and computationally challenging, 
more tractable approaches have been paired with scenario analysis 
techniques that draw parameter estimates from probability distribu-
tions to understand the likelihood of different ecosystem states53,54. 
Approaches that allow for this kind of future-casting are useful 
because they can aid in the identification of the potential causal 
pathway that led to an undesired state, provided that uncertainty 
is explicitly dealt with and allowed to propagate through to model 
predictions55,56.

Objective 3: Decide on management actions. Evaluating alternative 
management strategies is a fundamental component of environmen-
tal and conservation decision-making57, which has been adopted in 
fields such as fisheries management and strategic planning (Box 2). 
Ecosystem models that are able to meet this objective have two abili-
ties: (1) to incorporate or compare multiple management options 
(that is, anthropogenic processes), and (2) to evaluate each option 
against a clearly defined objective, such as improving the sustain-
ability or profitability of particular catchments or minimizing a 
species’ probability of extinction43,44. Many management decisions 
are informed by very complex models, with end-to-end ecosystem 
models16, ensemble ecosystem models17, individual-based mod-
els and MICE regularly used to guide decisions58. One approach 
to informing decisions based on process-based simulations of one 
or more system operating models is management strategy evalua-
tion59, which Edwards et al.60 used to determine sustainable quotas 
for a trophy-hunted lion population. Management strategy evalu-
ation approaches that incorporate ecosystem models have been 
used extensively in fisheries and have incorporated multiple model 
types — from extended single-species models, such as modelling 
stock population dynamics to determine reef line fishing priorities 
in the Great Barrier Reef region in Australia61, to MICE45, through 
to end-to-end models44.

Simple ecosystem models of interacting species and limited sets 
of other ecosystem components, often based on predator–prey 
dynamics (for example, Lotka–Volterra models), can guide man-
agement decisions where a small number of species interact very 
strongly62,63. Computational qualitative modelling64, qualitative loop 
analysis30,65 and ensemble ecosystem modelling66 are techniques 
that can be used to identify which ecosystem components are most 
important to manage, for the persistence of important species for 
a given length of time39. Bayesian belief networks have been used 
to test the outcomes of alternative scenarios of ecosystem pertur-
bation, often combined with process-based models of key ecosys-
tem components67,68. Evaluating management strategies — rather 
than predicting ecosystem outcomes — can sometimes avoid the 
challenges of parameter uncertainty and inaccurate predictions. 

NATuRE EcoLoGy & EVoLuTIoN | VOL 4 | NOVEMBER 2020 | 1459–1471 | www.nature.com/natecolevol1462

http://www.nature.com/natecolevol


Review ARticleNATuRE Ecology & EvoluTioN

Decision theory holds that it is generally easier to rank a finite set of 
outcomes (that is, choose the best management action) than it is to 
accurately predict any one of those outcomes69.

Spatial and temporal patterns. Representation of spatial and tem-
poral patterns is a relatively common feature of ecosystem models. 
Temporal patterns are common in all but the simplest ecosystem 

Box 2 | End-to-end ecosystem models and their application in fisheries management

End-to-end ecosystem models attempt to include all the major parts of ecosystems — biophysical, economic and social. Atlantis is a de-
terministic whole-of-ecosystem model used to support marine ecosystem-based management, system understanding and management 
strategy evaluation54. The simulation framework is based on modelling each part of the adaptive management cycle, through dynamic, 
two-way coupling of all system components (see figure for a conceptual illustration; modified from Fulton et al.36; RBC, recommended 
biological catch).

Atlantis models are used for strategic insight into system function and the consequences and potential trade-offs associated with 
different combinations of management strategies, providing information for strategic planning and decision support. Owing to the 
complexity of such models, they are generally inappropriate for use as tools for setting tactical management measures such as quotas, as 
absolute values are far less reliable than the patterns and relative distributions produced.

A good illustrative example comes from Atlantis-SE44, which was used as the basis for a whole-of-ecosystem management strategy 
evaluation (MSE) in support of a strategic restructuring of southeast Australian federal fisheries. This study developed and tested 
ecosystem-based management solutions for a complex of multispecies and multi-gear fisheries to predict ecosystem-scale responses 
to the consequences of alternative management scenarios. Strategies focused on different types and combinations of management 
including alternative quota management, spatial management and gear controls. MSE allowed quantitative comparison of the different 
future management scenarios: although no single management scenario outperformed the others across all ecological and economic 
objectives, outputs showed that successful management of such large and complex fisheries requires trade-offs to balance various input, 
output and technical management levers44.

MSE outputs were not intended to be prescriptive management advice, rather used as a decision-support for understanding potential 
futures of the ecosystem given different scenarios. The model is one of the most complex dynamic ecosystem models for fisheries ever 
developed, with uncertainty a crucial consideration — the quantitative MSE was performed across a bounding set of parameters that 
covered the range of plausible biomasses and dynamics. Structural uncertainty was minimized through the use of network analysis tools 
in developmental stages of the project, but human behavioural uncertainty produced unanticipated outcomes of management decisions. 
The whole-of-fishery and whole-of-ecosystem scale approach not only helps to highlight key processes requiring further study, but also, 
and most importantly, identifies integrated rather than piecemeal solutions to complex fishery management problems.
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models (for example, conceptual models) and typically represent 
the outcomes of interactions between different components over 
time. This is regularly done using coarse representations, such as 
a limited number of non-descript time steps seen in fuzzy cogni-
tive mapping31 or state-transition models70. At the other end of the 
spectrum, models of intermediate complexity and end-to-end eco-
system models can incorporate and provide outputs at much finer 
temporal resolutions (for example, hours, days, months or years).

Although spatially explicit ecosystem models are relatively few, 
spatial heterogeneity in ecosystems is an important consideration 
for management decisions, even in simple systems71. For example, 
the CORSET ecosystem modelling approach successfully combines 
spatially explicit connectivity modelling and dynamic interactions 
between trophic levels to inform coral reef management72. Spatially 
explicit approaches that can incorporate interactions between eco-
system components, such as spatially explicit population dynamic 
models73, are increasingly applied to this objective. Fordham 
et al.74 used metapopulation models to forecast Iberian lynx spa-
tial distribution and likelihood of extinction under climate change, 
accounting for trophic interactions (for example, prey availability 
and disease dynamics). Individual and agent-based models are also 
regularly used to answer similar questions, incorporating ecosystem 
components such as functional groups35 or species75.

Ecosystem components. Ecosystem models can be built to repre-
sent ecosystem components at a range of resolutions, including in 
the same model. Models used in fisheries management (for example, 
EcoPath, Atlantis) regularly use a mix of functional groups along 
with detailed species-level representations (which may include 
explicit size and age classes), as this guides decisions around specific 

fishing quotas within a broader ecosystem or food-web context. 
Individual-based and population dynamics models are increas-
ingly used to build whole-ecosystem models where species-scale 
predictions are required, but their use is more labour-intensive as 
they require demographic and behavioural information (such as 
dispersal, home range, birth rates and death rates) about all spe-
cies modelled76,77, as well as information about the pairwise interac-
tions between all species. They are also often very computationally 
expensive (struggling if they reach high numbers of agents), which 
can hamper their application.

Where high-resolution data are not available, or the questions 
being asked of the model do not require species-specific answers, 
ecosystem components can be represented as broader groups. For 
instance, biomass pool representations, functional or taxonomic 
groups, or whole-of-ecosystem condition scores are commonly 
used to represent ecosystem components. Techniques such as 
individual-based models and mass-balance models regularly rep-
resent ecosystems as functional groups. Other models only report 
generalized ecosystem condition scores. For example, state and 
transition models of grassland ecosystem condition have married 
both expert-elicited estimates and field-collected data to inform 
management70. The choice of how to represent each component 
in an ecosystem should be determined by two considerations: the 
objective of the model and the availability of data at the appropriate 
resolution.

Ecosystem processes. Models regularly include ecological processes 
that influence ecosystem trajectory and alternating states (dynam-
ics), particularly interactions between individuals of different spe-
cies (for example, trophic dynamics), dispersal, perturbations that 
impact individual components (for example, management interven-
tions) or the entire ecosystem (for example, large disturbances). For 
example, climatic regimes and trophic interactions are fundamental 
components of marine and freshwater ecosystem models (such as 
MICE or end-to-end models; Fig. 1)45,78. Despite this, coupling tro-
phic interactions with other environmental components to create 
models of terrestrial ecosystems has not been widely adopted35,39. 
However, dynamic global vegetation models have recently been 
linked with population models of grazers to predict long-term 
trends in vegetation79. So far, the models that regularly combine 
trophic interactions and other environmental components include 
MICE, ensemble ecosystem models and structural equation models 
(Fig. 1). This is an important step forward, as modelling food webs 
can provide considerable insight into improving the understanding 
and management of ecosystems80,81, especially when considered in 
tandem with other processes such as climate dynamics82,83.

Perturbations are fundamental processes in ecosystems, and those 
caused by humans are increasingly important84,85. Consequently, 
incorporating anthropogenic effects into models of socio-ecological 
systems is becoming more common, and most often these effects are 
represented as human-induced stressors and the actions undertaken 
to combat them86,87. Therefore, modelling techniques that allow for 
the inclusion of single-node perturbations and whole-of-ecosystem 
perturbations are of increasing utility. Including perturbations 
allows modellers to go beyond simply understanding ecosystems 
and predicting future ecosystem states, to making comparisons 
between alternate management scenarios and identifying optimal 
management regimes. Ideally, such scenario analysis or comparison 
of management strategies will involve explicit consideration of the 
costs of management88. Given the increasing influence of humans 
on ecosystems, being able to incorporate anthropogenic effects will 
also increase a model’s realism9.

Matching model complexity with applications
Ecosystem models, by definition, are required to have a reasonable  
level of complexity. This is particularly true when the objectives of 

End-to-end model

Action an

Action a2

Action a1

Threat tn

Threat t2

Species sn+1

Species sn

Species s3

Species s4

Species s2Species s1

Threat t1

Minimum realistic model

Fig. 2 | Varying levels of ecosystem model complexity. Conceptual 
illustration of varying levels of ecosystem model complexity for an 
ecosystem model with an objective of maximizing the abundance of 
species s1 and s2. Solid lines indicate interactions that occur between 
ecosystem components in a single level of the model; dashed lines indicate 
interactions between components across model levels. A minimum realistic 
model considers only the species, threats and actions (and the interactions 
between them) that directly influence the objective species (s1 and s2) 
(solid lines). Components can then be added to the ecosystem model that 
have increasingly distal interactions with the objective, building a model 
with increased complexity. Some components could represent individual 
species, and some could represent groups of species or other ecosystem 
components. An ‘end-to-end’ or ‘whole-of-ecosystem’ model would 
consider all components and interactions that occur in an ecosystem.
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model building extend beyond simply understanding the ecosys-
tem in question. With increasing computational power and data 
collection capacity (field, and expert-based), there are a grow-
ing number of approaches that can straddle a combination of the 
aforementioned objectives. Despite this, models that aim to cap-
ture as much complexity as possible tend to sacrifice utility and 
tractability, as model outputs can be uncertain and difficult to 
interpret25. Therefore, careful consideration of the number of eco-
system components included is required89, particularly given that 
increased model complexity results in reduced predictive capacity90. 
Whole-of-ecosystem models are most useful for long-term strategic 
planning44 but are less useful for directing management strategies at 
operational scales (for example, year to year) which require more 
accurate predictions. MICE attempt to operationalize ecosystem 
models for tactical management by balancing these two objectives 
— principally by focusing only on those ecosystem components and 
scales relevant to a particular decision context and undertaking rig-
orous model fitting91.

Ecosystem model development therefore requires a balanced 
complexity approach, in which the model being developed is only 
as complex as the modelling objective requires and the available 
data allow. Minimum realistic models attempt to model the few-
est ecosystem components and processes directly related to the 
model objective (Fig. 2)92. Such a model may have considerable 
structural uncertainty, due to missing ecosystem components, but 
will have minimized parameter uncertainty, and this partitioning 
of uncertainty will be acceptable for particular situations (for exam-
ple, tactical or operational management decisions93). For example, 
Pesendorfer et al.94 used ensemble ecosystem models to evaluate 
the optimal management of seed dispersal mechanisms to aid oak 
recovery in the Channel Islands. Although the model could have 
incorporated many additional ecosystem components, it focused 
only on the key structural and process elements (for example, dis-
persal dynamics of oak seeds) required to answer the management 
problem with enough certainty. Decisions to include particular eco-
system components and the spatial and temporal scales to model 
should be guided by the management objective and model capacity 
(for example, number of components, data availability)95, focusing 
on the components being directly affected by an action or related 
to the objective of an action96. In instances where a parameter is 
known to be important but has large uncertainty, models that can 
be parametrized using expert elicitation in a Bayesian framework 
or structural sensitivity analyses may be of use (see section ‘Dealing 
with uncertainty’). In many instances, a complementary set of mini-
mum realistic models is preferable to constructing a single, highly 
complex ecosystem model that captures all desired components and 
processes25. Each minimum realistic model can then be explored 
using structural sensitivity analyses that sample across structurally 
different, but equally complex models to assess the impact of struc-
tural uncertainty on model predictions.

For situations in which the objective is also to consider a 
broader set of components and processes (for example, preda-
tor–prey interactions across multiple trophic levels, single-node 
and whole-of-ecosystem perturbations; Fig. 1), a more complex 
model with increasingly distal processes and components is nec-
essary. The Atlantis end-to-end ecosystem model is an example of 
this, as it incorporates many types and scales of interactions (for 
example, predator–prey, and human–species) to inform strategic, 
long-term management decisions (Box 2). In this instance, adding 
to the model complexity will reduce the structural uncertainty (as 
more of the ecosystem is represented). However, structurally com-
plex models are difficult to parametrize and so can have consider-
able parameter uncertainty. Predictions and outputs may need to 
be made at a coarser resolution to ensure that model complexity 
and utility are balanced. In practice, this might mean aggregating 
species into functional groups or reducing the spatial and temporal 

resolution of the model. This may be an acceptable trade-off when 
only a conceptual or qualitative illustration of the system is required 
(that is, strategic questions pertaining to the general form of man-
agement to use).

Emerging modelling techniques and increasing computa-
tional power allow increasingly complex ecosystem models with 
fine-resolution outputs to be built, meaning the trade-off between 
model complexity and tractability is becoming less restrictive 
(though modellers should still be careful to consider model con-
tent carefully rather than becoming complacent or including model 
components ‘just because they can’). Instead, predictions made 
by ecosystem modellers are most likely to be limited by the data 
available to parametrize or constrain model outputs97,98. Two recent 
examples suggest that even with long-term monitoring data avail-
able to constrain ecosystem model outputs, model predictions 
remain highly uncertain due to the noise inherent in field datas-
ets17,90. Therefore, minimum realistic models and MICE may remain 
the best approaches to achieve balanced complexity, particularly in 
tactical management situations that require relatively precise pre-
dictions. These trade-offs have seen the emergence of techniques 
that are hybrids of some of the methods outlined in Fig. 1. For 
example, ‘Islands DSS’ incorporates population dynamics models 
with conservation planning to help to prioritize invasive species 
management on islands, while also incorporating temporal dynam-
ics99. However, even such hybrid methods can be difficult to param-
etrize. Smart use of hybrid approaches can make the representation 
of a whole system much easier — by representing the different com-
ponents of a system ‘in their native currency’ and focusing on key 
scales and processes for that component, rather than shoe-horning 
the diversity of an ecosystem into one formulation.

Ongoing research effort should be given to targeted data col-
lection for model parametrization. However, environmental and 
conservation decisions often cannot wait for new data. Alternative 
methods for learning, imputing or inferring components and pro-
cesses with sparse data that allow managers to act without waiting 
for more data are crucial90,98. This might mean settling for models 
that have complex structures but give only the direction of param-
eter outputs31, rather than precise estimates, or using management 
strategy evaluation approaches to rank scenarios. However, devel-
oping models that can incorporate complex ecosystem dynamics in 
a temporally and spatially explicit manner is also highly desirable100. 
One means of allowing more complex end-to-end representations 
and relatively fine spatial resolutions is to make use of general eco-
logical principles such as size spectra, which have been found to be a 
unifying description of many key ecological processes101,102. Another 
approach is to incorporate adaptive management techniques such 
as Markov decision processes that incorporate non-stationary 
transition models103. Most importantly, balanced complexity is 
best achieved when ecosystem models are developed to answer 
well-defined management problems, and where model outputs are 
well matched to the decision context50.

Dealing with uncertainty
Ecosystem models trade off three key qualities — generality (can 
the model be applied to a variety of scenarios?), realism (does the 
model realistically reflect the target ecosystem?), and accuracy and 
precision (do the model outputs have a high degree of certainty?)29. 
Uncertainty is a fundamental component of managing complex 
systems, and therefore good ecosystem models must allow for and 
embrace it89,104. The field of near-term ecological forecasting pro-
vides a robust framework for achieving this, by explicitly partition-
ing different types of uncertainty and iteratively updating model 
parameters by validating near-term forecasts with observations105.

Ecosystem models can make uncertainty more explicit by iden-
tifying key sources and consequences of it. For the purposes of this 
Review, we identify four distinct types of uncertainty: parameter, 
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Table 1 | Recommended strategies for explicitly considering and dealing with different types of uncertainty in ecosystem modelling

uncertainty 
source and 
type

Definition Suggested strategies according to degree of 
uncertainty

Applied case studies

Inputs

Parameter Uncertainty related to quantifying the 
input parameters (for example, interaction 
coefficients, initial value estimates) from 
actual observed data, or uncertainty about 
the observations (for example, sources such 
as field-collected data compared with expert 
judgements or guesses)

High Parameter sensitivity analysis using 
emulator-based approaches127

Formal model skill assessment117

Bootstrap resample from uncertain parameter 
distributions and show model predictions as 
distributions128

Ensemble ecosystem models90

Emulator-based ecosystem 
models127

Management strategy 
evaluation129

Medium Propagate all input uncertainty through to 
generate prediction envelopes
Fit model to data, parameter estimation
Reference sets of alternative models

Models of intermediate 
complexity58,130,131

Management strategy 
evaluation57

Low Formal model skill assessment117 Reporting of model skill 
metrics117

Process Uncertainty caused by the inherent variation 
and stochasticity present in ecosystems

High Ensembles of ecosystem models that use 
a variety of structural assumptions and/or 
modelling methods

Models of intermediate 
complexity91

Bayesian belief networks

Medium Explicitly simulate stochasticity in model 
inputs using a defined distribution of 
stochastic processes

Stochastic simulation 
modelling74

CORSET biophysical model72

Multispecies stochastic 
dynamic programming132,133

Management strategy 
evaluation

Low Typically captured in other uncertainty 
handling (for example, parameter, structural, 
scenario)

Not applicable

Model/ 
structural

Uncertainty related to the structure of the 
ecosystem model, including:
Model components
Specific model interactions (that is, links 
between components)
Shape of function describing model 
interactions

High Build ensembles of ecosystem models with 
different structural assumptions (across 
modelling philosophy, formulations used and 
ecosystem connections)

Ensembles of models 
with different structural 
assumptions
Structurally morphing 
models134

Medium Scenario analysis: identify and simulate 
multiple potential model structures, and 
contrast the predictions in a common format 
(for example, on a single set of axes)
Trial different model formulations within the 
one modelling approach/software (and using 
one ecosystem interaction network/food-web 
structure)
Consider multiple model configurations (that 
is, ecosystem interaction networks)

Management strategy 
evaluation135

Atlantis36

EcoPath with Ecosim136

Models of intermediate 
complexity131

Low Evaluate whether the model provides 
ecologically plausible results under a discrete 
set of scenarios (for example, perturbations)

Any model with quantifiable 
outputs should be able to do 
this

outputs

Future/
scenario

Uncertainty related to the predictions made 
by the forecasts or hindcasts of the ecosystem 
model (for example, confidence intervals), 
including uncertainty about future conditions 
(for example, climate change, unknown future 
human decisions). Often a result of propagated 
uncertainty from input parameters

High Build ensembles of ecosystem models across 
multiple scenarios.
Sensitivity analysis/Markov chain Monte 
Carlo simulations to understand distribution 
of possible futures
Explore a wide range of future conditions 
using scenario analysis

Ensemble ecosystem models39

Emulator-based ecosystem 
models
Models of intermediate 
complexity45,137,138

Structural equation models82

Medium Explore a discrete set of future conditions 
using scenario analysis
Management strategy evaluation

Structural equation models139

Bayesian belief networks140

Fuzzy cognitive maps31

Low Report results only in terms of how they vary 
across one other dimension of uncertainty (for 
example, parameter sensitivity analysis)

Any modelling approach with 
quantifiable outputs should be 
able to do this
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process, model/structural, and future uncertainty (Table 1). Some 
ecosystem models (such as conceptual models) do not explicitly 
consider uncertainty, thereby potentially giving a false sense of pre-
cision106. Given the inherent complexity of ecosystems (for exam-
ple, many components and nonlinear interactions) and the limited 
and noisy nature of ecological data, in some instances ecosystem 
models may never be able to make predictions with sufficient cer-
tainty17,107. Irrespective of this, ecosystem models must be explicit 
about their uncertainty. In Table 1, we provide some recommended 
strategies and modelling approaches for dealing with this uncer-
tainty. This includes, where possible, fitting or constraining models 
to real-world data17,54, building ensembles of models and identify-
ing where they converge on common predictions108, and ensuring 
models have capacity to test the sensitivity to input parameters and/
or alternative model structures, through the use of techniques such 
as Monte Carlo simulations109.

Because resolving uncertainties frequently requires further 
research, data collection or adaptive management that learns 
through action, it is often useful to conduct a priori analyses to 
determine which uncertainties are most important to resolve or 
account for. One approach to this is reviewing the dominant sources 
of uncertainty in similar (methodologically and/or ecologically) 
models105. However, to make this possible, increased investment 
in standardized, public reporting of ecosystem models is required. 
Another is using expert elicitation and/or existing data to quan-
tify the expected improvement in the decisions made (for exam-
ple, through value-of-information analysis) by resolving specific 
uncertainties110,111. Despite their benefits for informing knowledge 
acquisition, value-of-information analyses are rarely done at an 
ecosystem level but are more commonly applied to socio-ecological 
networks96. Hybrid, multi-scale ecosystem modelling methods are 
well suited to dealing with these challenges as they can use com-
plementary methods to incorporate and combine disparate forms 
and scales of data112, such as species information (abundance 
time-series estimates), interaction rates (for example, diet analysis), 
and responses to environmental perturbations (for example, fire or 
drought).

Building ecosystem models that both adequately describe 
and predict nonlinear ecosystem dynamics is difficult and some-
times not possible. This is mostly driven by large data needs and a 
requirement from managers to answer highly specific (for exam-
ple, species-level) questions, rather than more broad questions. As 
an example, Baker et al.17 aimed to predict the impact of eastern 
quoll reintroduction on eastern bristlebird abundance in Booderee 
National Park, Australia, but found that their predictions were 
highly uncertain owing to multiple plausible interaction pathways. 
To illustrate this further, in Box 3 we present the results of simulated 
dingo management on the simple network described by Wallach 
et al.113, showing that model predictions become more uncertain 
as distance from the direct management action increases. As a 
consequence, most conservation decision problems will need to 
acknowledge and deal with some uncertainty and therefore risks of 
unexpected outcomes114.

Identification of where key knowledge gaps exist can also be 
achieved through ecosystem modelling approaches110. Important 
uncertainties can be paired with qualitative descriptions of ecosys-
tems, using expert judgement to infer where knowledge gaps occur 
and also those that are most relevant for decision-making115. This 
needs to be done carefully because of the difficulty of consider-
ing multiple parameters simultaneously, and the nonlinearities of 
feedbacks. Ecosystem models can also be analysed to identify infor-
mation gaps by using parameter or structural sensitivity analyses, 
information theory, and other techniques to identify the model 
parameters or structural elements that are most uncertain, or which 
have the greatest influence on management decisions, and therefore 
where further data collection is required39,54.

Validating and refining ecosystem models
Ecosystem models are inherently difficult to validate, as optimal 
experimental designs for complex models could require many differ-
ent treatment and control combinations, and considerable temporal 
and spatial (geographic) dimensions. Therefore, other approaches 
(such as ‘inverse methods’) that derive a parameter space from 
mathematical models and observed data are required90,116. Model 
skill assessments — testing the ability of ecosystem models to suc-
cessfully make predictions — is emerging as a best-practice tech-
nique in marine fields and involves testing model hindcasts and 
forecasts against survey data117. When being used to inform decision 
making, model skill assessment should be targeted at the ecological 
components and processes most relevant to the decision context. 
Given that information uncertainty can influence outputs from 
conservation decision-support analyses118, this is a valuable com-
ponent of some ecosystem modelling approaches (Table 1). Some 
sources of parameter uncertainty are best addressed by refining and 
validating ecosystem models using experimental or field-collected 
data (for example, resolving linked species’ responses to natural 
disturbances through long-term monitoring of population dynam-
ics that covers a range of environmental conditions119). This is par-
ticularly pertinent when the modelling objective requires explicit 
consideration, and therefore data on particular ecological pro-
cesses. Structural uncertainty can be addressed through ecosystem 
manipulation or adaptive management (for example, node exclu-
sion or removal experiments120), which can also improve param-
eter estimates (or plausible ranges) for models if supplemented by 
long-term monitoring121.

Some ecosystem models can explicitly identify sources of uncer-
tainty, owing to their ability to partition the variance from differ-
ent errors (for example, process versus observation122). Such models 
become intractable with very large state spaces. For very complex 
ecosystems, an easier approach for identifying the ecological com-
ponents to which a decision problem is most sensitive is to pair 
ecosystem models with other decision theory practices. These 
range from structured decision making to management strategy 
evaluation, adaptive management and value of information analy-
sis115. Value of information analysis is most useful when the relative 
expected value of new information is expressed in the units of the 
conservation objective, and in terms of its influence on a conser-
vation decision111. For example, to what extent will improving our 
understanding of a given ecosystem component or process allow us 
to choose between two alternative decisions, and thereby reduce a 
target species’ probability of extinction110,123?

Ensembles of models have been used in ecology, fisheries and 
other fields such as economics to navigate uncertainty, particularly 
in forecasting attempts124. Making inferences from multiple models 
can be advantageous, especially when two different approaches give 
contrasting results125. For example, Spence et al.108 use a Bayesian 
framework for combining predictions from five separate ecosystem 
models on the impacts of cessation of fishing in the North Sea on the 
biomass of demersal fish species. Ensembles of ecosystem models 
have been used to predict the impacts of reintroductions on ecosys-
tems in Australia where interactions between multiple components 
are uncertain17, and could be expanded to consider the impacts of 
other environmental perturbations (for example, fire). In particular, 
corroborating predictions using multiple modelling methods can be 
a powerful tool for reducing uncertainty in decision making126.

concluding remarks
Modelling is a central component of understanding and managing 
ecosystems20. As a result, there is an impetus for ecologists and man-
agers to ensure that the modelling approach is appropriate for the 
decision or management problem, and its social and ecological con-
straints. These challenges mean that hybrid modelling approaches 
that explicitly consider different forms of uncertainty are becoming 
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Box 3 | The propagation of uncertainty through ecosystem models

Ecosystems are complex and multi-dimensional, with many possible interaction pathways and permutations. Building models that ac-
curately describe and predict nonlinear ecosystem dynamics for management can be very difficult, particularly when data are sparse (as 
is commonly the case). As the complexity of an ecosystem model increases, the number of interactions (and therefore the number of free 
parameters) will tend to increase as the square of the number of species being modelled.

To illustrate how this uncertainty can make predictions challenging, we built an ensemble ecosystem model, based on the network 
described in Wallach et al.113 (panel a of the figure). The network is made up of eight species and species groups: the dingo, red fox, feral 
cat, kangaroo, bilby, a generic small mammal (for example, dunnart), the European rabbit, and vegetation. We assume that our knowledge 
about the interactions is restricted to their sign structure (that is, we know if interactions are positive or negative, but not their strengths). 
Although this may sound pessimistic, it is not an unreasonable assumption. Parametrizations of microcosm ecosystems, which are 
spatially and temporally homogeneous, and can be replicated and accurately measured, display high uncertainty, with coefficients of 
variation greater than 1.

Following the methods described in Baker et al.66, we constructed an ensemble of 100,000 plausible models that share this sign 
structure, but where the parameters have an unknown magnitude. The ensemble members must also be able to persist with all species 
present (since this is the current state of the ecosystem). We then simulated the control of the dingo (Canis dingo), by annually removing 
25% of the remaining population, and reported the range of potential outcomes of the management action from the ensemble of models. 
The full method and interaction matrix used to build the model is in Supplementary Information section 2.

In the absence of quantitative parameter estimates, our model ensemble cannot provide certain advice about the outcomes of control 
for most species in the ecosystem (panel b of the figure shows the plausible range of abundances for each species over 4 years of dingo 
control; time shown in years). This uncertainty propagates through the ecosystem from the point of intervention and is greatest for 
species one or two interactions removed from the management action. Panel c shows the proportion of ecosystems in the ensemble for 
which each species increases in abundance (cyan), decreases in abundance (blue) and has no change in abundance (yellow). The model 
offers support for the prediction that dingo control will reduce dingo abundance and lead to an increase in fox abundance. However, 
both changes are of an unknown and potentially negligible size. The plausible ranges of responses by feral cats, rabbits, small mammals 
and bilbies include both positive and negative changes in abundance over the five time steps (panel c).

Without careful parametrization of ecosystem models, predictions will be highly uncertain. Indeed, even with considerable 
monitoring data, predicting the outcomes of management actions on species and potential flow-on interactions can be difficult17. For 
instance, a relatively well parametrized model exploring the effects of controlling rabbits in an arid Australian ecosystem still had 
uncertain outcomes for bilbies63.
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more prominent112. Here we have provided an overview of which 
techniques are likely to best match different objectives and the 
desired outputs. Uncertainty is a fundamental reality of managing 
and making decisions for complex ecological systems104. The strat-
egies outlined in this Review, such as model skill assessment, use 
of multiple models and management strategy evaluation, can help 
modellers explicitly acknowledge and integrate uncertainty while 
also informing good conservation and management decisions.
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